
7RD-R14l 467 A STUDY OF THE APPLICATION OF SOFTWJARE METRICS TO COBOL7 V1~(U) OHIO STATE UNIV COLUMBUS COMPUTER AND INFORMATION
I SCIENCE RES. N C DEBNATH ET RL- JUL 83

p NCLRSSIFIED OSU-CISRC-TR-94-3 RRO-i70i5 5EL F/G 9/2 NL

.. o. , . , - , :%., . , . , , ". . , . , _ o . - . . , . . - .

MICROCOPY RESOLUTION TEST CHART

-=

NATIONAL B3UREAU OF ST ANDARDS-1963 A i
I I 4

*nFI

%1

.4%

4* 4~%
49%

t -TECHNICAL REPORT SERIES

OSU-CISRC-TR-84-3

',I-

A STUDY OF THE APPLICATION

I OF SOFTWARE METRICS TO COBOL

00 By

N. C. Debnath and S. H. Zweben

000 00

4.0

DTIC
_ __ _ MAY 2 21984 0

1This dcument has been approvedIfor public release aind sale; its

0 ~ distribution is unlimite4 A

~~IX t1PLJTIEII

m THE OHIO STATE UNIVERSITY COLUMBUS, OHIO

s o * * ** .I
* ,

¢ ; ; . .? ; . . ; . . L%0. 0
.

0
' : ' '.

. , - T ,': , m
' ' >

'"f :
' ?

•
"

" "0 0"0, " '" ' i
' ' '

OSU-CISRC-TR-84-3

N'

A STUDY OF THE APPLICATION

*OF SOFTWARE METRICS TO COBOL

By

N. C. Debnath and S. H. Zweben

p

DTIC

S ELECTE

D

A

This =ant has been approved
If-r public release and sole; its

i diAribution is unlimited.

' Computer and Information Science Research Center

The Ohio State University
Columbus, Ohio 43210

July 1983

A. -"a• . -- -L '" " " , N' " " .. '"-
lj

I..

0'

45% .5%
V -

S
.4

Vt'.
*0

S
5'.S. .P~

5~.**.

.5'. 4
* - p.
*jkt.

5*45,

.8~,

.5'

*4%

64 -%e
$i-J

ill

4%

.5

5.-K'
'I

5%

I .4

'5

4 9.-ge
its

:5%.

SI'

t

45 - p . .. 5 5. . ..-.-. 5.....-.-.. *5*

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (1IIon Date Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPTING FORMV E

I. RFOXT UMB. GOVT ACCESSION NO. 3REC' 7 To 1 r~' NUMBER

4. TITLE (and Subtitle) TYPE OF REPORT A PERIOO COVERED

Technical Report
A Study of the Application of Software Metrics to
COBOL . PERFORMING ORG. REPORT NUMBER

7. AUTHOR(q) . CONTRACT OR GRANT NUMBER(-)

N. C. Debnath, S. H. Zweben DAAG29-80-K-0061

9. PERFORMING ORGANIZATION NAME AND AODRESS tO. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERS

Ohio State Univ N/A

11. CONTROLLING OFFICE NAME AND ADDRESS 12. IIEPORT DATE

U. S. Army Research Office July 1983
Post Office Box 12211 Is. NUMBERROF PAGES
Research Triangle Park, NC 27709 145

14. MONITORING AGENCY NAME G AODRESS(1I different from Controlling Office) IS. SECURITY CLASS. (of this report)

Unclassified
aIS. OECLASSIFICATION/DOWNGRADING

SCHEDULE

1 6. DISTRIBUTION STATEMENT (of tie Report)

Approved for public release; distribution unlimited.

17. OISTRIBUTION STATEMENT (of the abstract entered In Block 20. II differmnt hm Report)

IS. SUPPLEMENTARY NOTES

The view, opinions, and/or findings contained in this report are those of theauthor(s) and should not be construed as an official Department of the Army

position, policy, or decision, unless so designated by other documentation

I9. KEY WORDS (Continue an twers*e side It neceeery and identify by block number)

Computer Programming
Computer Programs
Software Engineering

""- - CT (V 0"n -e ,rwin aid if nd i.ldewity by block mbEev)

This report presents the results of a study of software metrics applied to

various classes of COBOL programs. PArticular attention is given to the

software science metrics of Halstead, which were applied to hundreds of CMinOT

programs written by students at Ohio State University, as well ar several

DO W3 E011'1O1 OF INOV SS IS O SOLETE UNCLASSIFIED
V, " : "**,° " " . * . , %. , " -" " "." . ..- . . -.. , ..- ,* . ."* "•. -'. ". ,r. ? .. <° , ' '

7 I

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE(1fem Dae Enterad)

ARO 17150.5-EL

20. ABSTRACT CONTINUED:

production COBOL programs. The results include support of the inclusion of

Data Division in the software science counting strategy, nonsupport for the

use of the software science language level metric, and the identification of a

weakness in the ability of the Halstead E measure to capture integration

effort.

Several proposed complexity metrics were compared for their ability to

predict actual development effort, with none of the metrics studied behaving

in an impressive manner. Some approaches for refitting existing complexity

metrics to overcome their apparent weaknesses are suggested.

Un nl si f i d---' sCCU'iTY CLASSIFICATION OF THIS PAoE(Wh- - Enter)

5. % ' ' " -,-' ." . ,% ',* -'-",,,'' ,% ',.''% "''""""'':2-.".•-"' ","-"

ii_ ? .. . t . s *
4,%' . , -. ; - - , -, , I .., , . - . . ' ,., ,/ , , .,.

Table of Contents

1. Introduction 1

2. Verification of the Softvare Science Metrics in COBOL Environment 5

2.1 Review of the Software Science Metrics 5

2.2 Analysis of Students' Programs 7

2.3 Analysis of University System Computer Center Programs 49

2.4 Comparison of the Results Between the OSU Analyzer and the Purdue 66

Analyzer

3. Relationships Among Various Software Metrics 71

-- 3.1 Motivation 71

3.2 Background and Definintions of Metrics 71

3.3 Source of Data and the Comparison of the Metrics 78

3.4 Module Based Comparison Between Effort and Information Flow 80

Complexity

4. Development of a New Approach to Measuring Software Effort 89

4.1 Motivation 89

4.2 Formulation of the Approach 91

4.2.1 Strategy 1 92

4.2.2 Strategy 2 94

4.3 Preliminazy Results 96

4.4 Further Refinement 98

5. Conclusion 101

References 103

I. A 105
I.1 Counting Strategy Used to Find the Information Flow Complexity for 105

COBOL Programs
1.2 Calculations for Finding Information Flow Complexity for Each Program 107

1.3 Calculations for Finding Chunk Model Complexity for Each Program 107

I.3 B 121

. ,,aned

~1 1tio

ioti

Si oal's

Abstract

' 4his report presents the results of a study of software metrics applied to

various classes of COBOL programs. Particular attention is given to the

software science metrics of Halstead, which were applied to hundreds of COBOL

programs written by students at Ohio State University, as well as several.

production COBOL programs. The results include support of the inclusion of

-Data Division in the software science counting strategy, nonsupport for the

use of the software science language level metric, and the identification of a

weakness in the ability of the Halstead E measure to capture integration

effort.

Several proposed complexity metrics were cor.pared for their ability to

predict actual development effort, with none of the metrics studied behaving

'. in an impressive manner. Some approaches for refining existing complexity

metrics to overcome their apparent weaknesses are suggested.

• j7.* ".

1vii

Preface

- This report is the result of research supported in part by the U.S. Arrmy

Research Office of Scientific Research under contract DAAG29-80-k-0061. It is

being published bv the Coriputer and Information Science Research Center

(CISRC) of the Ohio State University in conjunction with the Department of

Computer and Information Science. CISRC is an interdisciplinary research

organization which consists of the staff, graduate students, and faculty of

many University departments and laboratories.

-j

0

64

HXU ix

Index Terns

Software Engineering, Software Metrics, Development Effort

, N1

ku

0 , ,e ., < ; \ ; : ; ¢1 .

1. Introduction

Software Metrics, as a branch of Software Engineering, plays an important

role in the analysis and evaluation of software. Hany complexity metrics for

* computer programs have been developed. There are two categories into which

many of the more popular metrics can be divided. The first category may be

termed lexical metrics, which are based on the counts of various lexical

tokens in the system. This category includes Halstead's software science

metrics [31 and 'McCabe's cyclonatic complexity metrics [51. The second

category of metrics deals with the system connectivity by observing the flow

of control or information among the system components. Recent v;ork of Henry

and Kafura [41 using information flow, and the chunk model complexity measu77e

* by Davis [I] fall into this category.

This report presents the results of a study of the software metrics with

special emphasis on Halstead's software science metrics. The area of software

science has been explicitly studied by many independent research groups.

Since many of the experimental results reported by Halstead and others have

been very encouraging, these metrics have received considerable attention from

the computer science coranunity. Most of the work in applying metrics of

computer software using the methodology of software science has concentrated

on relatively few programming languages such as Fortran and PL/I. COBOL has

V received relatively little research attention with two notable enceptions.

Zweben and Fung [II] reported the results of a preliminary study of COBOL

programs which were counted manually. The work of Zweben and Fung [III

initiated the writing of a software science analyzer [21 for further study in

software science metrics in a COBOL environment. The use of this analyzei

%i helps to collect a large artount of data on COBOL programs. The an11vzer

provides a mechanical way of counting the tokens (operators and operands) of a

COBOL program, and hence can produce all of the softwate science statistics.

The software metrics research group at Purdue University has done perhaps the

4.,d

2

most comprehensive study of COBOL programs using software science 16J. So.e

aspects of our study, particularly those described in the next chaptei, are

similar to theirs, though different programs, programmers and anayses were

performed. This report will present the results of the analysis of a very

large number -f COBOL programs collected from various sources.

This report is divided into five main chapters. The next chapter deal-

with the verification of the software science metrics using a large number of
.5,

COBOL programs. The chapter has been divided into four sections. A brief

review of software science [31 is presented in the first section. The second

and third sections are concerned with the results of the analysis of the COBOL."

programs collected from two different sources, namely undergraduate students'

programs at The Ohio State University (OSU) and COBOL programs written by

production programnmers at the University Systems Computer Center of OSU. The .

last section shows the result of the comparison of the software science

statistics for some COBOL programs, which were run through two different COBOL

analyzers -- one developed at OSU and the other produced by the software

science research group at Purdue University. The third chapter has been

included to show the relationships ariong four different software metrics,

namely Halstead's Effort metric, McCabe's cyclomatic complexity metric, -

Kafura's information flow complexity metric and Davis' chunk model complexity

metric. The primary motivation of this chapter is to study the concept of

effort and its relation to development time of software. The four different

complexity metrics were evaluated for a small set of COPOL programs in order

to assess the relative complexities of these programs. The summary of the

results of comparing these four metrics is showm at the end of this chapter.

The weaknesses of these metrics motivated consideration of a new model for

software effort. This is outlined in Chapter 4. Finally, the closing chapter

suggests additional work to be done on this topic.
r..q

3

- Two appendices have been included for completeness of the report. Appendix

A describes the counting strategy used to calculate the information flow and

* chunk model complexities for COBOL programs, together with the explicit

calculations required for the results of Chapter 3. Appendix B gives the

major steps of the calculations carried out to obtain the results shon 7n

MW IChapter 4.

'.[.

I,

I

.# %

4J
* -.4

4.-

5

2. Verification of the Software Science Metrics in COBOL Environment

This chapter deals with the verification of the software science metrics

using a large number of COBOL programs collected from various sources.

2.1 Review of the Software Science Metrics

In software science, a computer program is considered to be a string of

tokens which are divided into "Operators" and "Operands". Generally, any

% symbol or keyword group in a program that specifies an algorithm action of tie

computer is considered an operator, and any symbol used to represent data is

- considered an operand. All software science measures are functions of the

counts of the operators and the operands.

The basic metrics in software science are defined as:

=number of unique operators
n2 = number of unique operands
N1 = total occurrences of operators
N2 = total occurrences of operands.

The length of the program is defined as

N=N, + N2 (2.1)

and the vocabulary of a program is defined as:

n = n + n 2. (2.2)

All other metrics are defined in terms of these basic ters and are shown

* below.

The estimated length is defined by the length equation:

N = ni log ni + n2 log n2° (2.3)

A suitable metric for measuring the size of the program, called volume, is

given by

-. %

- - - *- ...-- .. * - •

6

SV N log 2 n bits. (2.4)

Intuitively, the volume is the minimum number of bits necessary to

represent a complete program. The minimum possib]e volune that an algorithm

can take is known as its Potential volume, denoted by V*. By definition,

V* = (2 + n2 *) log 2 (2 + n2*), (2.5)

where n2* = number of I/0 parameters.

In terms of V and V*, a metric called Program level L of implementation of -

an algorithm can be defined as

V*
L - 0 < L < . (2.6)V

An approximation to this definition of L, expressed in terms of the number

of operators and operands used in the program, is denoted by

2 * n2(2.7)
n N2

1 2_ _ 2 7

The inverse of the program level is termed the difficulty, D. That is,

D (2.3)
L

Therefore, as the volume of an implementation of a program increases, the

program level decreases and the difficulty increases.

A metric, suggested by Halstead to characterize a programming language, is

called the language level X and defined as

= L * V* = L2V. (2.9)

Finally, a metric referred to as Effort is defined by the ratio

E =V--V- (2.10)
L V*

From the definition, it is clear that the effort required to implement a
"4%

-,: -o

". , " . ,""S+,:,'. i +.' ,,.', """"."":"" , ., "

'J6~ J6 . - - 7. .F-.

"-4
7

" :computer program increases as the size of the program increases. Therefore,

since V* is fixed for a given algorithm, software science predicts that h5.ghei

- level languages reduce the effort of programming.

-4

An estimate of E can be obtained using the estimate of program level. That

P" is,

V/t. (2.11)

The effort statistic has been interpreted as a measure of the mental effort

required to create a program. In other words, E represents the number of
" :mental discriminations or decisions that a single, fluent, concentrating

'. programmer should make in implementing the algorithm.

According to Halstead [31, the programming tine should be directly

proportional to the effort in a program. That is,

T Sec (2.12)
S

.% .where S denotes the rate of mental activity of the programmer; i.e., S refers

to the number of mental discriminations per second of which the programme-r is

capable. A value of S=18 has been used in previous research in software

-j science.

' 2.2 Analysis of Students' Programns

I%% 'This section shows the results of the analysis of a large numiber of COBOL

programs written by students at Ohio State University.

The data were collected by the use of a software science COBOL analyzer 12J

developed by the software metrics research group at Ohio State. The analyzer,

written in PL/I, counts operators and operands in the Data and Procedure

divisions, and computes all software science statistics for the enti:e

1'i program.

"-4%'" ~ ''.. . . ' -' -N,'.?.i - '''./ -.- "-'-?NN

*-. "--: a * -..- 84

The existence of this analyzer facilitates the collection of a substantial

-. .amount of data from the students of various undergraduate courses. Each

student uses a simple command, called ANALYZE, to run his/her COBOL program

through the analyzer. The outputs (software science statistics) of the

analyzer are stored on disk. At the end of each quarter, a final report

containing the software science statistics of ai.l the students' programs is

%, generated for analysis. The results of the analysis of all the data collected

during six consecutive quarters are presented in this section. Various kinds

of analysis were performed as described below.

For each particular program the following software science metrics were

evaluated:

N, N, X, L, D and E.

Each of the metric values shown in the table represents the mean of all

such values for a given program during a given quarter, obtained from the set

of programs written by different subjects.

Programs written by the students of two different undergraduate courses are

considered in the present analysis. One course is an introduction to Data

Processing (CIS 212), and the other course deals with the introduction to File

Processing (CIS 313). CIS 212 is the introductory COBOL course, and CIS 313

is the next course in sequence (also using COBOL). In the first course, we

examined six assignments (Lab 2, 3, 4A, 4B, 5, 6). Labs 2, 3 and 4A are of

increasing complexity (in terms of size and problem concepts), and in fact,

each lab is an extension of the previous lab. In other words, knowledge and

understanding of Lab 2 is helpful for writing Lab 3, and knowledge of Lab 3 is

somewhat directly useful to completing Lab 4A since both involve the use of a

matching algorithm. Lab 4B deals with ranipulating one- and two-dimensional

arrays, and is conceptually different from the previous three labs. Labs 5 .4

and 6 are of almost the sane complexity, although they solve two independent

0- .

" *' a;-'''-"" "4".". """"&"'..A.' ;,- '¢ '-;'*-;Z'" " " €% " -:" -'-" a'

9

J., 4

problems. Lab 5 involves sorting and Lab 6 is very similar to a report

generator program. In the Fall of 1982, the curriculum was modified so that

-- there were only five assignments instead of six. In particular, Labs 3 and 4A

* of the previous quarters were merged into a single assignment called Lab 3.
, ,This new Lab 3 has the identical function as old Lab 4A. All other

assignments were kept unchanged.

The second course contains three assignments involving COBOL. The first

program is a simple file listing program. The second assignment deals with

input data validation, and the third program updates a product master file by

making changes to several fields (e.g., product descriptions and prices,

adding new products and deleting old products, etc.). These three programs

are also of increasing complexity, although each assignment is a direct

extension of the previous one.

The first set of analyses will involve the Halstead length equation and

language level metrics, so that we will be interested in N, N, and A. We wi il

-. conpute the mean error and mean absolute relative error in the length equation

>: >for each assignment. The mean error is defined by (N-N)/N, where N and N

represent the mean values of the Ni's and N's, respectively, for a]l the

subjects performing the same assignment. Ni corresponds to the value of N for

ith subject. The mean absolute relative error is defined as

n -N

:~: ~n 1=1 N

where n is the number of subjects doing one particular assignment. The

a- results of these analyses as obtained in six different quarters for the course

CIS 212 are shown in the following tables.

744

'. -p10

LAB 2 (#subjects = 19)

N N - Mean Abs.N-N/N."'

Re!. Err.

Data Div. 643 1129 -0.75 0.67 31.3

Proc. Div. 350 519 -0.48 0.50 2.88

Program 993 1351 -0.36 0.36 2.19

LAB 3 (isubjects = 12)

_A/

N N N-,/N Mean Abs.

Rel. Err.

Data Div. 1117 1739 -0.56 0.59 42.4

Proc. Div. 719 902 -0.25 0.28 2.34

Program 1836 2101 -0.14 0.17 1.86

4...,.

LAB 4A (# subjects = 19)

N N N-N/N Mean Abs.

Rel. Err.

Data Div. 1408 2121 -0.51 0.51 44.97

Proc. Div. 1069 1251 -0.17 0.18 1.78

Program 2477 2559 -0.03 0.07 1.30

Table 1: Spring 119811, CIS 212

-7

4.Q

U

h4U

I.o

77771 - -- * -.-. -. P ..

-. 4,

LAB 4F ,.irsubjects 11)

. N N-?/I i.ean Abs.

.'~ - Rel. Err. A

Data Div. 825 1365 -0.65 0.67 21.24

Proc. Div. 1213 873 +0.23 0.26 u.36

Program 2038 1S 36 +0.09 0.12 0.54

LAB 05 (.subjects 11)

NF N-N/N 1ear Abs.
Rel. Err. A

Data Div. 1001 1559 -0.56 0.5 33.56
Proc. Div. 687 934 -0.36 0.36 1.42

- Program 1683 1978 -0.17 0.20 1.13
--- - -..----

LAB 06 k(Vsubjects = 2)<-1--
- N 14- /N Mean Abs.

Rel. Err.

Data Div. 1011 1661 -0.64 0.67 33.3b

Proc. Div. 615 941 -0.53 0.53 2.20

Program 1626 2013 -0.23 0.25 1.52

.m

Table 2: Spring [1931I, CIS 212

1A

'. -

i!

12

LAB 2 kizsubjects = 13)

N N$ N-Il/N V:ean Abs. "
Rei. Err. A

Data Div. 833 1317 -0.58 0.60 35.50
Proc. Div. 389 578 -0.49 0.51 2.69
Program 1222 1573 -0.29 0.30 2.06

LAB : k'suhjects = 22)

N N N-N/c Mean Abs.
Rel. Err. A

Data Div. 1032 1583 -0.53 0.55 37.00
Proc. Div. 640 849 -0.33 0.35 2.14
Program 1659 1936 -0.17 0.18 1.54

LAB 4A t;subjects = 9)

N N Ii-N/, "4ean Abs.
Rel. Err. x

Data Div. 1474 2310 -0.57 0.58 51.24
Proc. Div. 1050 1337 -0.27 0.28 2.04
Program 2525 2744 -0.09 0.10 1.43

Table 3: Summer 119811, CIS 212

N1

* .-

13

LAB) 4B (Visubjects =7)

N NN-N/N 'lean Abs.

SvData Div. 1233 1809 -0.47 0.52 23.9U
4. ~Proc. Liv. 1372 1070 ..-0.22 0.19 0.64

Program 2605 2258 +0.13 0.16 0.73

LAB 05 (iPsubjects =14)

*N H N-1/N Mean Abs.
Re!. Err. A

Data Div. 1118 1818 -0.63 0.64 36.50
Proc. Div. 798 1065 -0.33 0.35 1.45
Program 1916 2282 -0.19 0.21 1.16

L2,B 06 U csubjects 10)

11.- N N-17/1 flean Abs.
Rel. Err. A

Data Div. 1205 1872 -0.55 0.55 44.44
Proc. Div. 770 1054 -0.37 0.41 2.40
Program 1975 2218 -0.12 0.17 1.54

~ -,Table 4: Sumner 119811, cis 212

- - -- 7J6

41

*14

Aw LAB 02 (isubjects = 65)

NN N-N/N Mean Abs.
Mean Err. Re!. Err. "..-

Data Div. 695 1135 -0.63 0.65 29.8

Proc. Div. 336 523 -0.55 0.57 2.7
Program 1031 1412 -0.36 0.35 2.0

LAB 03 O#subjects = 76)

N N N-N/N Ilean Abs.
Mean Err. Rel. Err. -

Data Div. 1082 1652 -0.52 0.54 37.7
- Proc. Div. 592 837 -0.41 0.43 2.3

Program 1674 1993 -0.19 0.20 1.7

LAB 4A (i subjects = 70)

N N N-/N "lean Abs.
Nean Err. Rel. Err. A

Data Div. 1429 2229 -0.55 0.57 45.1
Proc. Div. 1019 1240 -0.22 0.24 1.6
Program 2448 2674 -0.09 0.14 1.3

Table 5: Fall [19811, CIS 212

S

..

.5,

%'U

'

n,*1 ,s. i,..,,;"N, '..o. , :''' ''''-' ,..' .¢;',)........';.
"

. .". ". " " " i ," x' -. '::' ' '. - '

15

%

4

AB 4B k'subjects = 69)

N N-F/N Iean Abs.
Nean Err. Rel. Err. X

Data Div. 714 1289 -0.80 0.84 26.4

Proc. Div. 1139 837 +0.26 u.24 0.45
Program 1653 1725 +0.07 U.13 0.63

LAB 05 U'subjects = 66)

N N N-N/N 1'ean Abs.
Mean Err. Rei. Err. X

Data Div. 1061 1721 -0.62 0.63 40.6

Proc. Div. 720 990 -0.37 0.38 1.42
Program 1781 2150 -0.21 0.21 1.17

LAB 06 (#subjects = 53)

, N N N-I/N Mean Abs.
. Z: Mean Err. Re]. Err.

Data Div. 1146 1607 -0.40 0.46 36.2
Proc. Div. 653 918 -0.41 0.42 2.2
Program 1799 1953 -0.08 0.12 1.4

Table 6: Fall [1981j, CIS 212

66

-.1

.-

.* -.

6'16

A-• .

"* C'LAB 2 Lsubjects = 108)

U , N-N/P, Mean Abs.
RPe!. Err. "

- Data Div. 730 1155 -0.58 0.60 28.36
Proc. Div. 353 538 -0.52 0.51 2.73
Program 1083 1398 -0.29 0.31 1.94

Z,-. LAB 3 kizsubjects = 110)

N H NH/N ean Aos.
Rel. Err. "

Data Div. 1120 1638 -0.46 0.50 3 5.8 8
Proc. Div. 616 850 -0.38 0.40 2.39 .
Program 1736 1968 -0.13 0.17 1.62
------------------------ ------ -----------.

LAB 4A (';subjects = 105)

N N N-U/N ",ean Abs.C...... RelI. Err.".

Data Div. 1431 2173 -0.52 0.54 46.37
Proc. Div. 1047 1226 -0.17 0.20 1.78
Program 2478 2595 -0.05 0.11 1.37

Table 7: Winter i1982i, CiS 212

.V4
i -

'C

'

24 ."'

17"-

6

LAB 4B kitsubjects 105)

11 N -/NMean Abs.
Re!. Err. A

" Data Div. 735 1272 -0.73 0.79 25.7
%J. Proc. Div. 1151 &89 -0.23 0.25 0.45

Program 1886 1712 +0.09 0.15 0.02

" LAB U5 ki:subjects = 96)

-)
' N N N-M/ Iean Abs.

Rel. Err. A

Data Div. 1118 1752 -0.57 0.57 42.7
. Proc. Div. 742 1005 -0.35 0.37 1.7

Program 1860 2154 -0.16 0.17 1.28
.4 a--

LAB 06 O subjects = 81)

N N N-/ flean Abs.
Re) . Frr. A

Data Div. 1348 1699 -0.26 0.29 32."
Proc. Div. 632 872 -0.38 0.43 2.29

Program 1980 2018 -0.02 0.03 1.40

Table 8: Winter 1982j, CIS 212

.1

"4 ''r ,,' ,g'~ , " 7 ,,,;,j'¢>g'*.,,.''.'''''.'- .,..' ..'''...,'-y .v ,->...'.'' i:'--- -'

18

LAB 2 Usubjects 154)

U Ni-N./N ean Aos.

Rel. Err. A

Datr Div. 720 1158 -0.61 0.60 29.14

Proc. D-v. 356 552 -0.55 0.54 2.63
Frograr' 1076 1422 -0.32 0.32 1.69

LAR 3 iwsubjects " 128)

N U N-Ni: ean Abs.

rel. Err. "

Data Div. 1111 1649 -0.48 0.49 36.78
Proc. Div. 602 850 -0.41 0.43 2.38
Program 1/13 1988 -0.16 0.16 1.63

lAmB 4A (iVsubjects 114)

N1 N N-N/N Fean Abs.

Re!. Err.

Data Div. 1470 2217 -0.51 0.51 48.06
Proc. Div. 1049 1245 -0.18 0.22 1. 3
Program 2519 2638 -0.05 0.08 1.38

Table 9: Spring 119821, CIS 212

ZIP

W.S

'

-v-

0-77-

'..-
* 19

N N N-7/N Mean Abs.
Rel . r .

, Data Div. 704 158 -07. 083 24
? 44 Proc. Div. 1175 845 *0.26 0.26 0.39

Program 1679 1710 -0.09 0.14 0.56

LAB 05 (Osubjects 90)

N N N-/N Mean Abs.

Re!. Err.

4.- .. Date Div. 1114 1745 -0.56 0.55 41.3

" .'. Proc. Div. 745 1014 -0.36 0.37 1.55
Program 1859 2145 -0.15 0.10 I.1?

m LAB 06 (U#suojects - 73)

' "" N N N-/N Mean Abs.
Pei. Err.

e.,-- - -.-.- - - - - - - - - - - - --- -

Data Div. 1319 1638 -0.24 0.26 30.7
Proc. Div. 610 879 -0.44 0.47 2.30
Program 1929 1971 -0.02 0.07 1.29

: "Table 10: Spring [1982j, C;S 212

,s

P~ 4 =

,::.,, *.**

I (. . . . - . . , --.. . . ., •..- ...-.

* *Ile *. s ~ ~ *-'*' * . . . ~ . . . *

20

IJB 2 k'subjects -114)

N NN-N Mean Abs.
Re! . Err.

-- - --p..- - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - -

- ~ Date Div. 725 1140 -0.57 0.58 29.0
Proc. Dliv. 329 496 -0.50 0.51 2.02
Prognram 1054 1390 -0.32 0.32 1.73

LF, 3 '.isubjects 67)

'...N N N-K/N Kean Abs.
Rel. Err.

Date Div. 1349 2014 -0.49 0.50 40.0
Proc. Div. 910 1152 -0.26 0.28 1.49
Program 2259 2451 -0.08 0.11 1.13

Table 11: Fall [1982J, CIS 212

)L .6

4' -21

4.

T'AB 4B (isubjects = 109)
A ^

N N-l/N 1Vean Abs.
Re!. Err.

% Data Div. 751 1287 -0.71 0.77 23.36
- Proc. Div. 1171 913 .0.22 0.20 0.37

Program 1922 1779 +0.07 0.13 0.50

LA. 05 k4,zsuojects = 81)

N N N-1/N Fean Abs.
Rel. Err.

- Data Div. 1058 1653 -0.56 0.57 37.8

Proc. Div. 721 966 -0.33 0.34 1.23
Program 1779 2075 -0.16 0.17 1.02

LAB 06 k:subjects = 28)

• ., N, N N-n/N Mean Abs.
"-: Re!. Err.

Data Div. 1384 1744 -0.26 0.26 32.6
Proc. Div. 615 928 -0.50 0.53 2.17
Program 1999 2125 -0.06 0.07 1.26

Table 12: Fall [19321, ClS 212

-. The sign of the error indicates whether N is an overestimate or
N kM A

- underestimate. Note that N is consistently an overestimate of the actuel

program length in all the assignments except Lab 4B. Also, neither the data

N nor the procedure division above yield a very acceptable length estimate. So,

%I ij comparison of the results amoong all six quarters indicate that the length

equation works well only when the data division is combined with the plocedure

. division. In other words, the best estimate of the programa length is attained

S ~ when the entire program is taken into consideration. T-e same conclusion was

drawn by Sben and Dunsmore in their software science anaIysis of COBOl.

programs (61 and was suggested by Zweben and Fung till.

a,.p_ "'A

K:-
22

Software science postulates that the language level) ay be used to

compare various programiing languages. If X is indeed a property of the

progrirtming language, we might expect that it is approximately a constant for

al) programs written in a given language. Hoever, the present analysis

indicates that the language level is not constant. This findin2 agrees with

that of Shen and Dunsmore [6J. It is also noticed that the X for the data

division is always very high compared to the X of the procedure division and

that of the program. This extremely large X for the data divAsion reflects

the fact that COBOL provides for a compact representation of a good deal of

information about type, size, structure and initial values of irdividucl and

group data items.

The other software science metrics that were evaluated for each prograr, are

E S (number of statements), L, D and F. Each of these metrics vere calculated

separately for the data division, procedure division and for the entire

program. For the data division, NOS denotes the number of periods, but for

the procedure division NOS refers to the total number of COBOL verbs used.

The primary reasons for calculating these metrics for eoch program are to

observe how these metrics differ from one quarter to the next, and to

determine if the change of D or E from one assignment to the next does really

reflect the intuitive relative complexity between them.

The mean values of these metrics for each program of CIS 212 in six

different quarters are presented in the following tables. The rumber of

programs (subjects) analyzed for each lab in a given quarter is the same as

that indicated in the previous set of tables.

It should be noted that the values of the software science vetrics obtained

in six different quarters appear to be very consistent. For example, V, N,

Error, A, KOS, L, D and E corrresponding to each assignment are observed to be

compatible from one quarter to the next. Note that there is a significant

' R--

-. °

23

A K:LAB 2
A AA

NOS L D 1/1, E

Data Div. 114 0.0821 12.17 56667
Proc. Div. 71 0.0336 25.93 73473
Program 185 0.0175 57.29 484810

PM LA B 3J..'i..

AAA

NOS L D- 1, E

- .- Data Div. 192 0.0699 14.29 133425
Proc. Div. 149 0.0264 37.88 258954
ro. Pogram 341 0.0112 89.02 1418182

LAB 4A

NOS L D-I/L E

Data Div. 243 0.0628 15.92 185558
Proc. Div. 223 0.0149 66.85 561890
Program 466 0.0079 125.91 2699046

Table 13: Spring 119811, CIS 212

CA"."

24

TAB 4B

Deta Div. 143 0.0589 16.96 109025
Proc. Div. 190 0.0066 152.35 1412113
Program 333 0. 005 171.88 2902761

IAB 5
----- ---

N~OS L D=1/I E

Data Div. 179 0.0683 14.65 12Gl iI
Proc. Div. 140 0.0181 55.22 300835
Program 319 0.0096 103.28 1575389

LAB 6

11OB L D3-1/I. E
-- -------------------------------------
Data Div. 178 0.0689 14.50 115863
Proc. Div. 118 0.0227 44.05 209213
Program 296 0.0109 91.74 1297416
-- -----------------..-------------

Table 14: Spring [19811, cIS 212

%%

* .o

A/.

at 25

LAP 2

AAAANOS L D=1 E

Data Div. 141 0.0764 13.08 85631
Proc. Div. 77 0.0553 18.08 35693
Prog, arn 219 0.0150 66.50 667409

%j 0 LAR 3

-b -V •OS L D=1/L E

Data Div. 173 0.0689 14.51 120941
Proc. Div. 127 0.0217 46.06 233156
Prog ram 300 0.0109 92.12 128630

ma

LAB 4A

*NOS L D= 1/L E

Data Div. 254 0.0659 15.17 187823
Proc. Div. 213 0.0160 62.33 523401
Program 467 0.0082 121.30 265540o

Table 15: Ruvrer 11931J, CIS 212

..

"°. -

a a

'a'.

!"5 ~

-2' .; - , .. ,...,. .-...

26

t _..

TAB 4B

Data Div. 209 0.0513 19.48 207925
Proc. Div. 216 0.0081 123.46 1350653
Program 425 0.0060 165 .36 3942"05

. IA 5

-- - -- - -- - -- - -- - -- - --- -- - - --- - -

NOS L D-1/ E

Data Div. 197 0.0652 15.34 141224

Proc. Div. 158 0.0158 63.09 395916
Program 355 0.0087 115.33 1913894

LAB 6

NOS L D-1/I/I, E

Data Div. 211 0.06B7 14.56 142618
Proc. Div. 153 0.0213 46.95 293731
Program 364 0.0099 100.40 1723033

Table 16: Surmior 119811, C)S 212

N-

F ."

p....

.5',

%' " ,",_,i,,+,+"ee +",J...'. -£*."."+"-".".".-."+-" .'," .. -"," '. '-,%,.''-",%-".e e-e,"" ''.£" e,;e~~l . U'

27

LAB 2

A 1A

170S L D~l1 E

Data Div. 123 0.0782 12.8 68920
Proc. Div. 66 0.0363 27.5 64627
Program 189 0.0159 62.9 513597

LAB 3

NOSL D-/L E

Data Div. 187 0.0671 14.8 128915
Proc. Div. 119 0.0236 42.3 185165
Program~ 306 0.0112 89.5 1253229

- LAB 4A

NOS L D=1/L E

Data Div. 249 0.0652 15.3 133051
Proc. Div. 209 0.0145 68.8 550366
Program 458 0.0079 125.6 267u5b I

Table 17: Fall i19811, CIS 212

% 4

".

+.

.4

.+

** *

.4

A "

4-

.4 .. ' ' .. :. : . . . <- , /..', ?....; ;,:'.) . ?';':,x.:

28

LAB 4B

NOS L D=EILE
--- --- S

Data Div. 128 0.0714 14.0 79007
. Proc. Div. 182 0.0076 130.7 1243456

F,-og am 310 0.0067 148.6 2356694

:":' lJr, 5 % -o

-------------------------- ;z - ------------ z------------- - - - - --.

NOS L D=I / L E

4 -- -- - -PData Div. 188 0.0701 14.2 122194

Proc. Div. 145 0.0165 60.4 327872
.. Program 333 0.0089 111.3 1660602

LAB 6

NOS L D"1/L E

Data D iv. 200 0.0649 15.4 147296
Proc. Div. 126 0.0219 45.5 230030
Progi am 326 0.0099 100.5 1590216

Table 18: Fall [1981J, CIS 212

-S

-. , "5%

i .d "

I'€ % '"|"",",', 1 , ' ";"''"","m.' "'', ; .. % -- - . ; : ' .. '.-. .,

29

LAB 2

NOS L D-I/L E...

Data Div. 130 0.0742 13.5 77459

Proc. Div. 71 0.0363 27.5 68916
Program 201 0.0154 64.8 559580

'4. LAB 3
AA A

NOS L D=1 / 1 E

Data Div. 192 0.0648 15.4 142029
Proc. Div. 126 0.0236 42.3 196147

iy . Progam 318 0.0108 92.6 1368461

\";. ~LAB 4A

NOS L D=1/iL E

Data Div. 248 0.0642 15.5 186835

Proc. Div. 215 0.0151 66.3 548483
Program 463 0.0081 123.4 2677119

* I Table 19: Winter i1982J, CIS 212

.rj
.4,

..I
-% .°,

.% 9

0N

a * * ** 444q 4* ,** 4 ~ ~ ~ 4~*

4...f *t%, *'I4 ~ % '%~~

30 -A

LAB 4B

NO0S 11 D= 1/L E

Data Div. 131 0.0703 14.22 36247
Proc. Div. 186 0.0075 132.29 1251474

Porm317 0.0065 152.28 2462322

* LAB 5
.7 ~ ~~ -- -

NOS L D=4/L E

*AData Div. 196 0.0701 14.25 129798

Proc. Div. 148 0.0177 56.32 317638
Program 344 0.0092 108.9 160S7651

- - - - - - - -- - - - - - - - - - -- - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - --- - - - - -- - - --

LAB 6

/ A A

11OS L D=1/L E

Data Div. 228 0.0577 17.32 196688
Proc. Div. 123 0.0239 41.69 220578

V.Program 351 0.0098 101.8 1602300
-- -

Table 20: Winter 11982I, CIS 212

-p.

-T

31

LAB 2

NOS L D/I1/L E

Data Div. 126 0.0745 13.40 73208
Proc. Div. 71 0.0329 29.45 12472

" Program 197 0.0152 65.84 561457

LAB 3

NOS L DI I, E

Data Div. 191 0.0655 15.26 135565
Proc. Div. 123 0.0236 42.30 189777
Program 314 0.0108 92.57 1314060

LAB 4A

aNOS L D=I/A E

Data Div. 255 0.0637 15.70 192030

: Proc. Div. 215 0.0152 65.78 543205
r oProgram 470 0.0080 124.51 2702553

Table 21: Spring (19821, CIS 212

a,..

r % 4

-%

%* , . 9

32

LAB 4B

NOS L D=1/L E

Data Div. 126 0.0708 14.12 80078
Proc. Div. 139 0.0071 139.89 1386760
Progr am 315 0.0064 156.95 2547522

TAB 5

NOS L D=l / L E

Data DLv. 195 0.0691 14.47 129545 t_
Proc. Div. 150 0.0170 58.84 340214
Pr ograi 345 0.0097 113.95 1778396

LAB 6

NOS L D-1/L E

Data Div. 224 0.0553 18.08 192614
Proc. Div. 118 0.0236 42.35 204212

Prog:am 342 0.0092 108.23 1768135

Table 22: Spring [1982J, CIS 212

As.

%"

-,.a ". . -"...-.- ".", "" "''''%.., ,"% 'N, ,,""-',,..",. ,",i".,, "- '•. . "-'.;-"...£-,.,,.,-,-,-.•,'

33

* LAB 2

m A

FOS L D=1/6 F
:...,. *

Data Div. 124 0.0738 13.5 74954
- Proc. Div. 65 0.0305 32.76 73313

Program 189 0.0146 68.4 568497

' . LAB 3

NOS L D-1/L E

Data Div. 229 0.0607 16.5 132272
Proc. Div. 184 0.0146 68.15 489512
Program 413 0.0077 129.16 2494739

" *-Table 23: Fall [19E21, CIS 212

'N

.4

4 °0 "

.. ..

I
-

s'

34 A--

43

I.. B 4

VMS L D4/L E

Data DiLv. 132 0.0659 15.16 92928

Proc. Div. 192 0.0069 144.0 1476488
Progi am 324 0.0059 169.2 2908132

T B - -- - ---- - - - -- - - 7 -- - - - - - - -- -- - -- - -- z-- - - - - - -

NOS L D"I/L E

Data Div. 183 0.0679 14.72 126003
Proc. Div. 145 0.0153 65.12 358810
Proglam 328 0.0084 118.5 1784601 -j

LAB 6

NIOS L D=1/L E

Data Div. 234 0.0549 18.2 200314
Proc. Div. 119 0.0225 44.36 219478
Program 353 0.0088 113.26 1921595

Table 24: Fall 119821, CIS 212

difference in the values of the software science metrics for Lab 3 in the Fail,

of 1982 as compared to Lab 3 in the previous quarters. In particular, the new

Lab 3 has higher N, N, NOS, D and E values than those for the old Lab 3, but

comparable to those of Lab 4A as expected due to the change made in this

particular assignment in the Fall of 1982.

The final set of analyses performed on the programs of CIS 212 is the

calculation of the relative values of NOS, D and E for all the assignments to

those of Lab 2. Since this is the first introductory prograriming course in ., ,

COBOL, the purpose of these analyses is to see the change in the values of

these metrics with respect to the complexity of the assignments relative to

Lab 2. The explicit values of these analyses are shown separately for each
-!

program in the following tables.

L4_

.o, .

.....................

35

LAB 2

A A

NOS Re1. NOS D Rel.D E Rel.E
%J to Lab to Lab to Lab

2 2 2

Data 114 1 12.17 1 56667 1
Proc. 71 1 25.93 1 73473 1
Prog. 185 1 57.29 1 484810 1

TAB 3

NOS Re I. TOS D Re 1. D F Re I. E
to Lab to Lab to Lab
2 2 2

Data 192 1.68 14.29 1.17 133425 2.35
Proc. 149 2.1 37.88 1.46 258954 3.52

n Prog. 341 1.84 89.02 1.55 1418182 2.92

I .~.LAB 4A

NOS Rel.NOS D Rel.D E Re!.E
to Lab to Lab to Lab
2 2 2

Data 243 2.13 15.92 1.31 185558 3.27
.. Proc. 223 3.14 66.85 2.56 561390 7.65

Prog. 466 2.52 125.91 2.20 2699046 5.57

Table 25: Spring 11931], CIS 212

Z-

. i?

. I ,.c

, - - i - i- - . - . . .- - - 1 -
-

/ .'-.L -- 5 . *5. * - . -, . ..-. - - - . -. -.. 54_ i .

36

LAB 4B

NOS Rel.NOS D Rel.D E ReI.E
to Lab to Lab to Lab
2 2 2

Data 143 1.25 16.96 1.39 109025 1.92

Proc. 190 2.68 152.35 5.87 1412113 19.22

Pr-nv. 333 1.8 171.88 3.00 2902761 5.99

TAIR 5

N" ,OS Rei.NOS D Rei.D E Rei.E
to Lab to Lab to Lab

2 2 2

Data 179 1.57 14.65 1.20 120101 2.12

Proc. 140 1.97 55.22 2.13 300835 4.09

Prog. 319 1.72 103.28 1.80 1575389 3.25

LAB 6

NOS Rel.NOS D Rel.D F Rel.E

to Lab to Lab to Lab
2 2 2

Data 178 1.56 14.50 1.19 115863 2.04
Proc. 118 1.66 44.05 1.69 209213 2.85
Prog. 296 1.6 91.74 1.60 1297416 2.68

Table 26: Spring [1981], CIS 212

AI

-4'-

- m 37

LAB 2

NOS Rel. NOS D Rel.D F Rel.E
to Lab to Lab to Lab

- 2 2 2

Data 141 1 13.08 1 85831 1
Proc. 77 1 18.08 1 35693 1
Prog. 218 1 66.50 1 667409 1

%l LAB 3

OS Rel.NOS D Rei.D F ReJ.E
to Lab to Lab to Lab
2 2 2

Data 173 1.23 14.51 1.11 120941 1.41
Proc. 127 1.65 46.06 2.55 233156 2.72
Prog. 300 1.38 92.12 1.38 1286308 1.93

p LAB 4A

NOS Rel.ITOS D Rel.D . Rel .E
to Lab to Lab to Lab
2 2 2--- ---

Data 254 1.80 15.17 1.16 187823 2.19
Proc. 213 2.77 62.33 3.45 523401 6.11
Prog. 467 2.14 121.30 1.82 2655406 3.98

Table 27: Suimer 11981], CIS 212

:..
*a P

*j
4
w%

? :

'p

.I , *.4

-'. ,,y ,' -.

38

, LAB 4B

NOS ReI.NOS D Rel.D E Rfe .. .U
*.' to Lab to Lab to Lab

2 2 2

Data 209 1.48 19.48 1.49 207925 2.42
Proc. 216 2.81 123.46 6.83 1350653 15.76
Prog. 425 1.95 165.86 2.49 3942805 5.91

LAB 5

NOS ReI.NOS D Rel.D E Rel.E
to Lab to Lab to Lab
2 2 2

Data 197 1.40 15.34 1.17 141224 1.65
Proc. 158 2.05 63.09 3.49 395916 4.62
Prog. 355 1.63 115.33 1.73 1913894 2.87

LAB 6
AA

NOS Rel.NOS D Pel.D E Rel.E
to Lab to Lab to Lab
2 2 2

Data 211 1.50 14.56 1.11 142618 1.66
Proc. 153 1.99 46.95 2.60 293731 3.43
Prog. 364 1.67 100.40 1.51 1728033 2.59

Table 28: Surmner 11981], CIS 212

AwI ..

"I'.'

39
,%

LAB 2

NTOS Rel.IOS D fel.D E Pel.E
to Lab to Lab to Lab
2 2 2

4 Data 123 1 12.6 1 68920 1
Proc. 66 1 27.5 1 64627 1
Prog,. 189 1 62.9 1 518597 1

LAB 3AA

NOS ReI. VOS D Rel.D E Pel.E

to Lab to Lab to Lab
.' . 2 2 2

Data 187 1.5 14.8 1.2 128915 1.8
Proc. 119 1.8 42.3 1.5 155165 2.8

Prog. 306 1.6 89.5 1.4 1253229 2.4

. ~ LAB 4A
--

FOS ReI.TNOS D e I .D F Ret.E
to Lab to Lab to Lcb
2 2 2

Data 249 2.0 15.3 1.2 183051 2.6

Proc. 209 3.2 68.8 2.5 550366 8.5
Prog. 458 2.4 125.6 1.9 267051 5.1

Table 29: Fa]l i19811, CIS 212

A%~ I % %:

.

%u"-,. , r " """ -%. .""%-''"'% %.'' ; ''''':-. '''-.....-.-.'''. ''' . 3',,,., 't". ' .k

1%7 V-

40

., y TAB 4B

NOS Rel.NOS D Rel.D E Rei.E
to Lab to Lab to Lab
2 2 2

Dzta 128 1.1 14.0 2.2 79007 1.1

Proc. 182 2.3 130.7 4.7 1243456 1S.2

Prog. 310 1.6 148.6 2.4 2356694 4.5

LAB 5

AA

NOS ReI.NOS D Rel.D E Rei.E
to Lab to Lab to Lab
2 2 2

--

Data 188 1.5 14.2 1.1 122194 1.7
Proc. 145 2.2 60.4 2.2 327872 5.1

Prog. 333 1.7 111.3 1.7 1660602 3.2

TAB 6

NOS Rel.NOS D Rel.D F Rei.E
to Lab to Lab to Lao

2 2 2

Data 200 1.6 15.4 1.2 147296 2.1

Proc. 126 1.9 45.5 1.6 230030 3.5
Prog. 326 1.7 100.5 1.5 1590216 3.1

Table 30: Fall i1961j, CIS 212

.4.

V.n'

i.°

,V.; . ;) ;.¢ -. ¢..': .. '.. .:-. '... - -. .:

41
S. 4 4

LAB 2

N'OS Rel.NOS D Rel.D E Rel.E

to Lab to Lab to Lab
2 2 2

" Data 130 1 13.5 1 77459 1

Proc. 71 1 27.5 1 63916 1

- Prog. 201 1 64.8 1 559580 1

LAB 3

NOS Rel.NOS D Rej.D E ReI.E
to Lab to Lab to Lab
2 2 2

Data 192 1.47 15.4 1.14 142029 1.83
-. Proc. 126 1.77 42.3 1.54 196147 2.84

Prog. 318 1.58 92.6 1.43 1368461 2.44

LAB 4A
2%---

NOS Rel.NOS D Rel.D E ReiL.E

to Lab to Lab to Lab

2 2 2

, Data 248 1.90 15.5 1.15 186835 2.40
.- Proc. 215 3.02 66.3 2.4 548483 7.95

- Prog. 463 2.30 123.4 1.90 267719 4 78

Table 31: Winter 11982], CIS 212

. i5

G::4

.1~ '% -,

'I

42

LAB 4B

NOS ReI.NOS D Rel.D E ReL.E
to Lab to Lab to Lab
2 2 2

Data 131 1.00 14.22 1.05 86247 1.11
Proc. 186 2.62 132.29 4.S 1251474 16.16
Prog. 317 1.57 152.28 2.35 2462322 4.40

LAB 5

NOS Rel.NOS D ReI.D F Ret.E
to Lab to Lab to Lab
2 2 2

.---

Data 196 1.50 14.25 1.05 129798 1.67
Proc. 148 2.08 56.32 2.05 317638 4.8
Prog. 344 1.71 108.9 1.68 1687651 3.02

.4 LAB 6

NOS ReI.NOS D Rel.D F Kel.E
to Lab to Lab to Lab
2 2 2

Data 228 1.75 17.32 1.28 196688 2.54
Proc. 123 1.73 41.69 1.52 220578 3.20
Prog. 351 1.75 101.8 1.57 1&02300 3.22

Table 32: Winter 119821, CIS 212

~. .%

WE--',

t~',

'--

" ~ -

: .y,. - i . . . - -, . - . , .,. .
'
. -.. _. . .. -., - -

43

LAB 2
A A

UNOS RelI. NOS D Rel.D E Rel.E
to Lab to Lab to Lab
2 2 2

Data 126 1 13.40 1 73208 1
Proc. 71 1 29.45 1 72472 1
Prog. 197 1 65.84 1 561457 1

I."

LAB 3
**~ -- ---

NOS Rel.fNOS D Rel.D E rel.E
to Lab to Lab to Lab
2 2 2

Data 191 1.52 15.26 1.14 135565 1.85
Proc. 123 1.73 42.30 1.44 189777 2.62
Prog. 314 1.59 92.57 1.41 1314060 2.34

JAB 4A*.'- ..-

NOS Rei.IIOS D Rel.D E Rel.E
to Lab to Lab to Lab
2 2 2

Data 255 2.02 15.70 1.17 192030 2.62
• Proc. 215 3.03 65.78 2.23 543205 7.49

Proc. 470 2.38 124.51 1.89 2702553 4.31

.-. Z Table 33: Spring 119821, CIS 212

% V
hN

, m. ' ,, %" - ' ' "', -,- " - % " " . ,.,% ,'- . • • . " "- " -- . .- .- ,. % " " ' " -. ,e -

44

4.. LAB 4B

NOS Rel.NOS D Rel.D E Rel.E
to Lab to Lab to Lab
2 2 2

Data 126 1 14.12 1.05 80078 1.09
Proc. 189 2.66 139.89 4.75 1386760 19.13
Prot. 315 1.60 156.95 2.38 2547522 4.54

LAB 5

N40S ReI. NOS D Rel.D E Re .E
to Lab to Lab to Lab
2 2 2

Data 195 1.55 14.47 1.08 129545 1.77
Proc. 150 2.11 58.84 1.99 340214 4.69
Frog. 345 1.75 113.95 1.73 1778396 3.16

LAB 6

NOS Rel.NOS D Rel.D F, P.el.E
to Lab to Lab to Lab
2 2 2

lata 224 1.78 13.08 1.35 192614 2.63
Proc. 118 1.66 42.35 1.43 204212 2.82
Prog. 342 1.73 108.23 1.64 1763135 3.15

Table 34: Spring i1982j, CIS 212

% %"

."

.. 0,,

%, ,,

#,. #'

45

LAB 2

,NOS Rel.NOS D Rel.D F Rel.E
to Lab to Lab to Lab

2 2 2

" Data 124 1 13.5 1 74954 1

Proc. 65 1 32.76 1 73313 1
_p Prog. 139 1 68.4 1 568497 i

,v --

LAB 3
9--- --

NOS Rel.NOS D Rel.D E nei.E
to Lab to Lab to Lab

%4 % 2 2 2
.*.~-- ---

Data 229 1.8 16.5 1.2 182272 2.4
? Proc. 184 2.8 68.15 2.08 439512 6.6

Prog. 413 2.2 129.16 1.8 2494739 4.4

Table 35: Fall 11982J, CIS 212

*949o

.9.

N..

4/ :''P '"--; ; '" " ",' ""'- - ',''i',:" - - " " " "- '. " " "" ."." ." "-".-," -""'.',. . -''. -" " - "'

46.z

LAB 4

A A

VOS Rel.NOS D Rel.D F Rel.E
to Lab to Lab to Lab
2 2 2

Data 132 1.06 15.16 1.12 92928 1.2
Proc. 192 2.9 144.0 4.4 1476468 20.13
ProL. 324 1.7 169.2 2.5 2908132 5.12

LAB 5

NOS Rel.11OS D ReI.D E Rel.E "
to Lab to Lab to Lab
2 2 2

Data 183 1.5 14.72 1.09 126003 1.68
Proc. 145 2.2 65.12 1.98 358810 4.6
Prog. 328 1.7 118.5 1.7 1784601 3.13

LA3 6

ITOS Rel.IIOS D Re!.D E ReI.E
to Lab to Lab to Lab
2 2 2

--

Data 234 1.89 18.2 1.32 200314 2.67
Proc. 119 1.83 44.36 1.35 219478 2.99
Prog. 353 1.36 113.26 1.65 1921595 3.3

Table 36: Fail [19821, CIS 212

in order to test the validity of the soft,:are science metrics, further

analysis vas performed on the relative difficulty of these assignments. For

such analysis, the coordinator ksupervisor) of this course was asheed to give

the approximate relative difficulties of each assignment with respect to the

others. It should be mentioned that the coordinator was not aware of the

analyses and research that was being performed on these assignments. He was

asked to report the relative ratings of the assignments to help assess aspects

of the course curriculum. The relative difficulties of the assignments

reported by the coordinator can therefore be treated as an independent set of

t.

,- .~ I-.-. .** ,*' ,* . % ** . . , ;$-. a* . *..,. .. '. .. a- a', ' . *',L w % .

447

in addition to the relative difficulties of the assignments, the

coordinator also provided the approximate avount of tim.e (based on

experience with the course and interaction with students vho had taken t:e

* . course) that a student spent corpleting the Lab 4A. Based on this tiT:' r.i

hours) of Lab 4A and the relative ratings of all the assignments (assuminf, the

difficulty of Lab 2 to be one unit), the times needea to complete the rest of

the assignments were calculated. The results, on the bas. s of tne

" coordinator's report, are shown below.

_- .4* 'I

Assignment #

2 3 4A 4B 5 6

Relative Difficulty 1 2 5 6.4 3.6 3
" (coordinator)

Approximate Effort 7 14 35 .45 25 21
- ours (coordinator)

The timing information thus obtained for each assignment was compared wth

-. the estimated time calculated from the software science effort ,-etr~c. The

range of the relative effort (assuming the effort for Lab 2 to be unity) for

each program, based on the values found in six different qu-rters, and the

.. -L corresponding range of the estimated times ar-e shovn.

L°..

r: ..

4.

~..-....-.. ... -*..," ,;,''.,'"-

- ~ ~~~ -1 . z -**t. *-g- a

48

a.,.

Assipment #

2 3 4A 4B 5 6

Relative Effort 1 1.9-2.9 4.0-5.6 5.9-6.0 2.9-3.3 2.6-2.7
(Software Metrics)

Approx. Effort - Hrs. 7.5- 19.9- 41.0- 44.8- 24.3- 20.1-
(Software Metrics) 10.3 21.9 41.7 60.9 29.6 26.7

''a

These results show that software science estimate of prograrlming tirmes fo:-

this set of programs is somewhat consistent with t-e times reported by the

coordinator.

For coripleteness of the analysis, the relative number of statements klines

of code) and the actual time allotted for each assignment are also presented.

Assignment #

2 3 4A 45 5 6

Relative # stus 1.0 1.4-1.8 2.1-2.5 1.8-1.9 1.6-1.7 1.6-1.7
!a (Lines of Code)

ctual tine
allotted (weeks) 1.0 1.5 1.5 1.5 1.3 1.3

a.-

%,.

It appears, for this set of programs, that the lines of code analysis shows

* a very different estimate of the relative complexities than does the Halstead -

",...

-'

.4 49

-' effort metric. The lalstead difficulty metric also does not give the same

reiative complexities as does the effort metric. It is interesting to observe

that the relative time allotted to these labs is inadequate no matter wrhich

relative measure is used. Traditionally, students taking this course seem to

face a great deal of difficulties in completing their assignments due to lacic

gue of time. Therefore, these kinds of data analyses appear to be potentially

.,-' " helpful for curriculum improvements.

The analyses performed on the programs of CIS 212 were also done for the

three programs of CIS 313. The results of these analyses obtained in three

- " different quarters are shown in the following tables.

* The software science metrics found for Lab 1 and Lab 2 in three different

% quarters appear to be quite consistent. However, in the case of Lab 3, the

values of the metrics vary slightly from one quarter to the next.

It is observed that for these three programs, the length equation works

equally well both for the entire program as well as for the procedure division

alone. Also, note that for Lab 2 and Lab 3 (the larger labs) when the entire

program is considered, the N is an underestimate of the actual length. But

for Lab 1, N is consistentiy an overestimate of the actual program length. in

addition, the data division analysis for each program shows a very large

' value, as was observed in connection with the programs of CIS 212. All

other metrics, e.g., NOS, D and E, for each assignment are reasonabiy

consistent in every quarter.

2.3 Analysis of University System Computer Center Programs

The analyses of the students' programs collected from the introductory

" i "COBOL courses at the Ohio State University were show.m in the previous section.

The purpose of this section is to study the behavior of the software science

metrics for programs written in an environment which is different from the

.? ' '*.. . '. -.- . -. -. -. - . . . -. - . , -. - ' , . . -", " , % -. ; . - -

50 2

LAB I subjects 23)

N N N-N/N M'ean Abs.
Re!. Err.

Data Div. 758 1072 -0.41 0.41 28.16 .. 7

Proc. Div. 445 669 -0.50 0.50 2.39
Program 1202 1361 -0.13 0.14 1.29
--- ---

'. LAB 2 r:subjects = 24)
.4 ..--- ---

N N N Mean Abs.

Rel. Err. X

Data Div. 685 1074 -0.57 0.56 21.85
Proc. Div. 827 808 +0.02 0.12 1.37
Program 1512 1503 +0.006 0.09 1.01

LAB 3 ti--subjects - 21)

N N-N /N ,Mean Abs.

Rel. Err. ,

Data Div. 1508 2170 -0.44 0.46 39.18

Proc. Div. 1722 1746 -0.01 0.13 1.09

Program 3230 2908 +0.09 0.10 0.73

Table 37: CIS 313, Winter 1982

.

-7 ,

.4"

4..%

51

LAB I

PNOS L D=1/L E
. - - - --- - - - - - - - - - - - -

Data Div. 135 0.0721 13.9 79093
Proc. Div. 90 0.0282 35.5 110729

.,-: Program 225 0.0119 83.6 786455

NOS L DI/L E

Data Div. 118 0.0671 14.9 78109
Proc. Div. 172 0.0154 65.1 402913

"" Program 290 0.0093 107.6 1304337

LAB 3

NOS L D=1 / L E
.-

Data Div. 266 0.0580 17.2 225732
Proc. Div. 382 0.0090 111.2 1603554
Program 648 0.0052 191.6 5319304

*--

Table 38: CIS 313, Winter 1982

4

IND ~
ore A*

52 J

LAB 1

N Os Rel.1NoS D Re 1.) E Re .E
to Lab to Lab to Lab

-',1 1 1
------ --

Data 135 1 13.9 1 79093 1
Proc. 90 1 35.5 1 110729 1
Pro,,. 225 1 83.6 1 786455 1

.4..

TAB 2

NOS Re I. NO, D Rel.D E Rel.E
to Lab to Lab to Lab
1 1 1 -

Data 118 0.87 14.9 1.07 78109 0.98
Proc. 172 1.9 65.1 1.8 402913 3.6
Prog. 290 1.3 107.6 1.3 1304337 1.6

TAB 3

NOS Rel.NOS D R el.D E Fei.E
to Lab to Lab to Lab
I 1 1R

Data 266 1.9 17.2 1.2 225732 2.3
Proc. 382 4.2 111.2 3.1 1603554 14.5 *,4

Prog. 648 2.8 191.6 2.3 5319304 6.8

Table 39: CIS 313, Winter 1982

V '

! "

q • -

$4q

4 ;;-,:''", '''',:;-. ."'-6 -- '' ';"'i-':-''--' '. .,, "" '' ,,.,,'%.3" ; "-,,,' ,,~ . -... 4
m'

53

.1"

,.'. LAB 1 kiLsubjects 34)

AA

'J

Re]. Err.

'X' Data Div. 787 992 -0.26 0.27 24.65
-" ' Proc. Div. 381 450 -0.18 0.22 1.42

Program 1163 1245 -0.06 0.09 1.30

LAB 2 kvsubjects = 37)

NN N-N/N Mean Abs.
Re!. Err. X

,. Data Div. 757 1136 -0.50 0.51 30.13
Proc. Div. 875 840 +0.04 0.11 1.22
Program 1632 1602 +0.02 0.07 1.06

LAB 3 k,#subjects - 31)

N N N-h/N Fean Abs.
Rel. Err. X

" Data Div. 1693 2370 -0.40 0.41 47.15
Proc. Div. 2121 1902 +0.10 0.11 0.85
Program 3814 3215 +0.16 0.15 0.68

*--,

N' Table 40: CIS 313, Spring 1932

--%

.4.\.'i

N :

'pI

PO' 1~*~~' 1 V % 7 % ~ *' , * .%'

!

"q

LAB I A re
1os L D1/L E

Data Div. 140 0.0664 15.06 87327
Proc. Div. 74 0.0234 42.63 108461
Prog am 214 0.0122 81.36 729955

LAB 2

1110s L D-I/ L E

Data Div. 129 0.0749 13.35 73545
Proc. Div. 172 0.0140 71.25 463148
Program 301 0.0092 108.82 1434305

LAB 3

NOS L D-/lL E Ni

Data Div. 296 0.0589 16.96 246934
Proc. Div. 448 0.0071 140.85 2552067
Program 744 0.0045 218.62 7476508

Table 41: CIS 313, Spring 1982

'

ma

dV

N/

*55

LAB 1

NIOS Rel.NCS D Rei. D E Rel.E
to Lab to Lab to Lab
1 1 1

Data 140 1 15.06 1 37627 1

Proc. 74 1 42.63 1 108461 1
Prog. 214 1 81.86 1 729955 1

-A.

LAB 2
4 ~.---;7-------------- ------

-. NOS Rel.NOS D Rel.D E PRe].E
to Lab to Lab to Lab

Data 129 0.92 13.35 0.88 78545 U.39
" Proc. 172 2.32 71.25 1.67 463148 4.27

Prog. 301 1.41 108.82 1.33 1434305 1.96

•.4 , LAB 3

NOS Rei.NOS D Rel.D E Rel.E
to Lab to Lab to Lab
1 1 1

- Data 296 2.11 16.96 1.12 246934 2.82
Proc. 448 6.05 140.85 3.30 2552067 23.52
Prog. 744 3.47 218.62 2.67 7476508 10.24

Table 42: CIS 313, Spring 1982

* -A"

"*' -. _ .,o . - . . -- .. . "- ... ,.-.-,-

56

Uri I O'subjects 50)

N UN-Y'll Mean Abs.
Rel. Err. A-

Data Div. 815 1088 -0.33 0.35 27
Proc. Div. 448 637 -0.42 U.43 2.2
Progrcrm 1263 1370 -0.08 0.11 1.23

LAB 2 kv-subjects =39)

N N N-NN Mean Abs.
flel. Err. A_

Data Div. 354 1254 -0.46 0.49 26
Proc. Div. 830 850 -0.02 0.12 1.3
Program 1684 1692 -0.004 0.08 1.02

LAB 3 ki;/subjects =21)

N N N-N/N Mean Abs.
Rle!. Err. A

Data Div. 1334 1821 -0.36 0.39 36.5

Proc. Div. 1358 1360 -0.001 0.(38 1.1

Program 2692 2435 +-0.09 0.09 0.32

- - -- -- - -- - - - - - - - - - - -- - - - - - - - - -- - --- - - - - - - - - - - - -- --- - - - - - -- --- - -- - - -- -

Table 43: cis 313, Fall. 1982

57

LAB 1

NOS L D-1l E

Data Div. 141 0.0677 14.77 90732
, . Proc. Div. 89 0.0269 37.07 117566

* Program 230 0.0116 36.22 862136

LAB 2

NOS L D-1/L E

Data Div. 145 0.0645 15.49 104038
Proc. Div. 10 0.0151 66.29 430312
Program 315 0.0088 112.58 1581638

1AB 3

NOS L D-IA F

Data Div. 230 0.0604 16.5 187637
Proc. Div. 299 0.0108 92.5 1094962
Program 529 0.0062 160 3991401

Table 44: CIS 313, Fall 1982

. 7

?

JI.

58

.. "LAB 1

NIOS Re I1. OS D P.e 1. D E ReI.E
to Lab to Lab to Lab

%1.6..Data 141 1 14.77 1 90782 1
Proc. 89 1 37.07 1 117566 1
Prog. 230 1 86.22 1 862136 1

TIAB 2A

NOS Re I. NOS D Rel.D F eLE

to Lab to Lab to Lab
.----- 1 1 1

Data 145 1.02 15.49 1.04 104038 1.14

Proc. 170 1.9 66.29 1.78 430812 3.6

Prog. 315 1.37 112.58 1.30 1581638 1.3
-- U

LB3

NOS Rel.NOS D Rel.D F ReI.E
to Lab to Lab to Lab

- Data 230 1.6 16.5 1.1 187687 2.06
Proc. 299 3.35 92.5 2.5 1094962 9.3
Prog. 529 2.3 160 1.85 3991401 4.6

Table 45: CIS 313, Fall 1982

%students' environment. In order to observe such behavior, ten COBOL programs

of various sizes were obtained froir the University Systems Computer Center at

the Ohi.o State University. These ten production programs, written by

professional progranoners, were much larger in size and perform different kinds

of functions than the students' programs considered earlier.

Each of the ten programs was run through the software science analyzer at

the Ohio State University to calculate the software science statistics. The

results of the analyses of these programs fol'o-.

The analyses of the University Systems programs show that for some prograris

•C-

59.€4.

N N N-N/
(rel. err.) x

- - Data Div. 1623 3406 -1.09 30.39
Proc. Div. 2567 3162 -0.23 0.80

* Program 4190 5755 -0.37 0.83

Table 46: Prograrn-ID: OLD-SC-TASK 04 iFile 151

-4-.--

N N _-11N
(rel. err.)

Data Div. 1696 3607 -1.13 32.43
Proc. Div. 2948 3506 -0.19 0.78

• Program 4644 6201 -0.34 0.81

Table 47: Program-ID: NEW-SC-TASK 04 [File 16i

N N tN/ N
kre]. err.) x

Data Div. 1858 3165 -0.70 31.95
Proc. Div. 1916 2315 -0.21 0.91

£ Program 3774 4420 -0.17 U.78

Table 48: Prograri-ID: OLD-AD-TASK 19 [File 17J

*444

4 -% , ,,*,;,, , -,,/ ;.- ; . ,:. ,-,--o-- % <. .4 4:.-.- -. ,:.-, , _-:,....,. .2. .' 7 "< -""- ' -

60

N N N-N/
krel. e rr.) x

Data Div. 1870 3195 -0.70 32.34
Proc. DIv. 200-1 2397 -0.20 0 .91,

Prog0ram 3871 4509 -0.16 U.80 1

Table 49: Program-ID): NEW-AD-TASK 19 [File 18]

Data Div. 123 7 2143 -0.73 33.69
Proc. Div. 2191 1924 A0.12 0.45
Program 3428 3033 +0.11 0.42

Table 50: Program-ID: OLD-Al-TASK 19 [File 19]

(rel. err.) x

Date Div. 1249 2171 -0.74 34.09
Proc. Div. 1955 1949 +0.003 0.64

'pProgram 3204 3129 +0.02 0.53
- -'p.- -

Table 51: Program-ID: NlEW-AI-TASK 19 [File 201

Pro-m N-. -,.-7N S." %

U M61

N N N-N /N
(rel. err.)

Data Div. 956 1968 -1.05 35.33
Proc. Div. 2669 2830 -0.06 0.90
Program 3625 4136 -0.14 0.78

... "Table 52: Program-ID: OLD-YT-TASK 42 [File 211

N N N-N/N
krel. err.)

Data Div. 1215 2497 -1.05 37.80

Proc. Div. 3127 3210 -0.02 0.88

Program 4342 4821 -0.11 0.80

Table 53: Program-ID: NEW-YT-TASK 42 [File 22J

' N N N-N/N

(rel. err.)
I---

Data Div. 1782 3901 -1.19 61.00
Proc. Div. 5133 4680 +0.08 1.51
Program 6915 7204 -0.04 1.47

Table 54: Program-ID: OLD-VX-TASK 75 [File 23J

--4 "-'

; 4"

-p

62

N1 N N-N/N
krel. err.)

Data Div. 2242 4755 -1.12 61.02
Proc. Div. 6835 5642 +0.17 1.23
Program 9017 8552 +0.05 1.22

Table 55: Program-ID: NEW-VX-TASK 75 [File 241

NOS L D=I/L E

Data Div. 268 0.0465 21.5 302322
Proc. Div. 590 0.0060 166.6 3704166
Program 858 0.0046 217.4 8537391

Table 56: Program-ID: OLD-SC-TASK 04 iFile 151

NOS L D= 1/L E

Data Div. 278 0.0468 21.4 316410
Proc. Div. 653 0.0055 181.8 4706727
Program 931 0.0043 232.5 10220465

.1-- -------------- --------

Table 57: Program-ID: NEW-SC-TASK 04 [File 161

%i.

-,.

a'

! , : t v ,,; -;-b'-:' -;,-'-%-".i'.::..<'-;'-.. ,-.;,:'.;.-.:4,#'.?.:..;-.:..:.;' .;€';.'..':';.'..,. ..x.a'

. W . ." . °- ° . ,

LI 63

DOS L D-l/L E

Data Div. 322 0.0448 22.3 355401
Proc. Div. 385 0.0076 131.6 2087500

V Program 707 0.0048 208.3 7113125

..--

Table 58: Program-ID: OLD-AD-TASK 19 [File 17i

NOS L D-/ E

Data Div. 324 0.0449 22.3 357371
Proc. Div. 401 0.0074 235.1 2250270
Program 725 0.0048 208.3 7315625

Table 59: Program-]D: NEW-AD-TASK 19 [File 18JTal a.9:

NOS L D=1/L E

Data Div. 208 0.0580 17.2 172706
Proc. Div. 501 0.0051 196.1 3467450S Program 709 0.0038 263.2 7764473
--

•$ Table 60: Program-ID: OLD-AI-TASK 19 [File 191

MN-.

-A.

A

64

#.~NOS L D- 1/L' E

.V.Data Div. 211 0.0580 17.2 174724
AProc. Div. 437 0.0064 156.3 2468750

Program 648 0.0044 227.3 6291590

Table 61: Prograa-LD: NEW-Al-TASK 19 [File 201

A /A

NOS L D-1/L E

Data Div. 162 0.0680 14.7 112382
*Proc. Div. 642 0.0063 158.7 3609206

Program 804 0.0049 204.1 6636938--------------------- ----------------- -----------------A
Table 62: Progran:i-)D: OLD-YT-TASK 42 iFile 211

---- --
A

AA

NOS L D-1/L E
----- --
Data D'Av. 209 0.0613 16.3 164127
Proc. Div. 718 0.0057 175.4 4755614
Program ~ 927 0.0045 222.2 9933333

Table 63: Program-ID: NEW-YT-TASK 42 [File 22J

4~/7

U65

*NOS L D- 1, E

Data Div. 326 0.0623 16.1 252279
Proc. Div. 1164 0.0057 175.4 8202456

Z Program 1490 0.0047 212.7 14170000

Table 64: Program-ID: OLD-VX-TASK 75 [File 23J

* : NOS L D 1 / E

Data Div. 412 0.0548 18.2 370802
*q Proc. Div. 1503 0.0044 227.3 14505000

SProgram 1915 0.0037 270.3 24149459

. -Table 65: Program-ID: NEW-VX-TASK 75 [File 24J

the length equation works better for the procedure division alone, and for

others the length equation gives a better estimate when the entire program is

considered (i.e., when the data division is combined with the procedure

division). It should be noted, however, that for almost all of these programs

both the procedure division and the entire program give reasonable values of

the error. A similar conclusion was drawn by Shen and Dunsnore from the

analysis of their COBOL analyzer program itself [6]. Since the data division

is a significant part of any COBOL program and may require a considerable

amount of programming effort, it still seems reasonable to include it in

software science studies.

For each of these production programs, the X value for the data division is

observed to be much higher than that for the procedure division or the whole

program, as was observed in connection with the analyses of the students

programs. It is also interesting to note that the vaiues of X for these

programs are generally much lower than the X values for the student programs.

131 Shen and Dunsmore observed that X seems to fall as the program size increases.

However, the two largest programs in this sample have the largest values of A !

"".& "-..

Fri 66

Additional metrics, e.g., NOS, L, D and E have also been evaluated for each

- program. It is interesting to note that for this particular set of programs,

the NOS and E metrics order the programs in the same way. However, we were

unable to obtain data from University Systems which would allow us to validate

S.,.. *E as an estimate of actual development effort.

2.4 Comparison of the Results Between the OSU Analyzer and the Purdue Analyzer

In order to find out the differences between the software science metrics

values when using two different counting strategies, the programs collected

from University Systems were run through two different COBOL analyzers. One

COBOL analyzer was developed at OSU, and the other anaiyzer was produced by

the software metrics research group at Purdue University. The metrics values

produced by the two analyzers are shown in the following tables. Since it was

observed that the best software science estimates are generally achieved for

the entire program rather than for the data or procedure division alone, this
4 ,

section includes the results only of the analysis of the entire program ki.e.,

combination of data and procedure division). The differences noticed :r the

values of the metrics are due to the differences in counting strategies of

operators and operands as proposed by the two groups [2j. It appears that the

Purdue analyzer was unable to analyze the largest program (File 24) among a!l

these ten programs obtained fror the University Systems.

The results of both the analyzers on the University System production

programs show that the length equation works well for almost all of the

programs in the set. When the OSU analyzer is used, it is noticed that the

length equation produces positive error for the two smallest and the largest

program. For all other programs, the length equation produces negative

errors. On the other hand, the use of Purdue's analyzer shows that the length

equation produces negative errors for all the programs in the set e~icept the

smallest program. These results, as obtained for this set of ten production

., programs, contradicts the result observed for 11 AIRMICS production progrs

67

°q

PURDUE OSU

FROG.
ETA N1 ETA2 N2 ETA1 Ni ETA2 N2

File 15 101 1486 329 1368 123 2286 540 1904

File 16 105 1633 360 1562 127 2531 579 2113

File 17 87 1324 268 1212 98 1970 431 1804

File 18 88 1364 276 1250 99 2026 439 1845

File 19 93 1303 200 1028 102 1958 288 1470

'1 File 20 87 1198 208 962 96 1800 303 1404

File 21 87 1118 276 1281 103 2073 399 1552

File 22 91 1323 326 1532 107 2442 463 1900

File 23 89 2385 499 2243 100 3982 693 2933

' File 24 - 113 5259 806 3818

"p.

-%j

.9l

68

PURDUE OSu

PROG. N-N

N N-N x N N-

Ftle 15 2854 3423 -0.20 0.55 4190 5755 -0.37 0.83

File 16 3195 3761 -0.18 0.55 4644 6201 -0.34 0.81

File 17 2536 2722 -0.07 0.56 3774 4420 -0.17 0.78

File 18 2614 2806 -0.07 0.55 3871 4509 -0.16 0.80

File 19 2331 2137 +0.08 0.34 3428 3033 +0.11 0.42

File 20 2160 2162 -0.001 0.44 3204 3129 +0.02 0.53

File 21 2399 2798 -0.17 0.50 3625 4136 -0.14 0.78

File 22 2855 3313 -0.16 0.53 4342 4821 -0.11 0.80

File 23 4628 5048 -0.09 1.06 6915 7204 -0.04 1.47

File 24 -.. 9077 8552 +0.05 1.22

%J

% .%

69

" I N .P .; F1m s

PURDUE OSU

PROG. #

Estimated Estimated
ETime in Hrs. E Time in Hirs.

File 15 5201458 80 8537391 131

F * File 16 6434318 99 10220465 158

% F.- File 17 4212549 65 7113125 110

File 18 4447800 68 7315625 113

File 19 4548095 70 7764473 120

File 20 3578873 55 6291590 97

File 21 4121212 63 6636938 102

File 22 5287021 82 8833333 136

File 23 8532264 132 14170000 219

File 24 -
24149459 373

. y-.,

70

reported by Shen and Dunsmore [61, namely that the length equation produces

negative errors for small programs but positive errors for large programs.

"(.

It was also found [6, 7j that the range of program sizes for which the

length equation appears to work best is 2000 ! N < 4000. It is of interest to

note that the program length prediction for all the programs in that range are

quite satisfactory.

- Another result reported [61 for AIRMICS production programs is that

language level (M) is affected by then size of the program. In particular,

large N's are accompanied by smaller A's. However, the A values obtained for

these 10 production programs, using two different analyzers, do not seem to

support this particular result.

In summary, the COBOL studies provided mixed results. On the positive

side, the length estimate was once again found generally satisfactory. The

effort measure also provided some more evidence that it can be used to

approximate development time, and can reliably estimate relative effort of

development, at least for (small) student programs. Use of this infornwation

to assist in curriculum control was also suggested.

On the negative side, further evidence against the utility of the language

level measure was obtained. Large variances were observed, consistent with

other studies, and conflicting evidence of the relationship between A and N to

that of Shen and Dunsmore was obtained. Contrary results to those of previous

authors concerning the sign of the relative error in the length estimate was

also obtained. The counting strategies for the OSU and Purdue analyzers

appears sufficiently different that the actual values of several of the

metrics changes dramatically. This has very serious implications if these

metrics are to be used in an absolute sense, say as estimates of development

tire. It once again points out the need for taking great care in interpreting
the results of software science studies, and in comparing these results with

those of other researchers. ..

71,
• d -'

U 71

.j 3. Relationships Among Various Software Metrics

3.1 Motivation

Software complexity metrics appear to have numerous advantages in the

design, construction and maintenance of software systems. While several such

metrics have been defined, and some of them have been validated on actual

systems, significant work remains to be done to establish the relationships

ariong these metrics. This chapter shows the relationships among four

different complexity metrics, which were calculated for a small set of COBOL

programs. The primary motivation of this study is to investigate the e::tent

to which each of the four complexity metrics correctly orders the programs by

their actual programming time, the hypothesis being that a more complex

program takes longer to write. The metrics considered in this study were

Halstead's software science effort 3easure [3j, McCabe's cyclomatic complexity

metric 15], Henry and Kafura's information flow complexity metric [4], and

Davis's chunk model complexity metric [1J. Since the information flow

complexity is primarily used to define the complexity of an individual

procedure rather than the complexity of the entire program, a section has been

included to find the relationship between the Halstead's effort and the

information flow complexity for each module using the same set of COBOL

programs.

3.2 Background and Definintions of Metrics

The definitions of each complexity metric considered in this study are

given in this section.

The Halstead's Effort (E) is computed using the equation k2.11), as defined

. in Chapter 2.

J v

72

McCabe's Cyclomatic Complexity

The cyclomatic number, V(G), of a graph with a vertices, e edges, and p .1

connected components is 15J

V(G) = e-n+p.

McCabe assumes that ev.-ry program can be represented by a directed graph

.e where the edges represent different control paths and the nodes represent

processing segments. The number of components, p, can be identified with the

number of different routines in a program. It can be shown that the

cyclonatic complexity for a program is a function of the number of predicates

in the program. Formally, if G is a program containing; M binary decision

points ke.g., IF, WHILE, FOR) then the cyclomatic complexity, V(G), is

VG) - M+1.

McCabe has shown that this value of V(G) denotes the cardinality of a basis

set of paths through a program.

Henry and Kafura's Information Flow Complexity Metric (IFC)

The information flow complexity metric 141 deals directly with system

connectivity by observing the flow of information or control among system

components. In this case, the formula for defining the complexity value of a

procedure is 4'

IFC = Length * (fan-in * fan-out)2,

where

Len::h of a procedure is defined as the number of lines of text in
the source code for the procedure.

Fni of a procedure A is the number of local flows into
procedure A plus the number of data structures from which the procedure
A retrieves information.

Fan-out of a procedure A is the number of local flows from A plus
the number of data structures which procedure A updates.

4.'e,
4°

173

The term "local flow" is defined as follows:

There is a local flow of information from module A to module B if one or

more of the following conditions holds.

1. If A calls B,

,* ** 2. If B calls A and A returns a value to B, which B subsequently

utilizes, or

3. If e calls A and B passing an output value from A to B.

I: For example, consider the following structure chart for a COBOL program:

,A

74

.1o*

f..

IAI

. IBi
4-...

-. ic IDI IEI "

Id

AA
- , A.

PERFORM B.
ADD I TO X.

PERFORM C.
ADD P, Q GIVING X.
MOVE Y TO Z.
PERFORM D.
PERFORM F.
hOVE ZERO TO Q.

C.
*j

M]OVE 5 TO P.
ADD I TO Q.

D.
S. S"

ADD Z TO K. -

E.

PERFORM C.

In this particular example,

I" '".. . ' ' " ' " € " " -,,,-"€ ' " "" " """ " " , " ' ' ' '" '

U7

Fan-in of B - (i local fl.ow into B) + (# DS from which B retrieves
information)

2 -2+3=5

since, there is a local flow from A to B (by definition 1) and also
from C to B (by definition 2). The data elements from which B

." retrieves information are P, Q and Y.

- Fan-out of B (# local flow from B) + (t DS which B updates)
=3+3 =6

since, from B there is local flow to C, D and E, and the data elements
undated by B are X, Z andQ.

; The details of the counting strategy used to find information flow

complexity for COBOL programs are explicitly listed in Appendix A.

j Chunk Model Complexity (C)

In this approach, chunks are used as a basis of complexity measurement.

The original idea is based on the fact that an expert programmer does nota understand a program on a character by character or line by line basis.

Rather progranmers assimilate groups of statements which have a comm..on

. function. These groups are called "chunks". Therefore, the idea is to

consider a program as divided into more than one chunks based on some definite

criteria (which vary from language to language). The complexity of each chunk

is determined, and these can then be added up to calculate the complexity of

: the program. For example, in a COBCL program each performed paragraph can be

treated as a chunk.

The final formula for program complexity can then be written in the form

or 4

76

chunks (f 1 R

chunks fi o

where

Ci Copleityofthe ith chunk (e.g., lines of code)
-fi fn-in for the ith chunk) = R =f 2/3, Review Constant. [:

It should be noted that in this case the definition of fan-in is different

from the fan-in used in connection with information flow complexity of the

previous section. In particular, here the term "fan-in" accounts for the

number of other chunks affected by a particular chunk. Formally, chunk A is

affected by chunk B, denoted by A => B, if any one of the following conditions

is true.

1. Chunk A has a control connection to B: A => cB,-"

2. Chunk A has a data connection to B: A => dB.

Now, A has control connection to B, if A contains a PERFORM or GO TO

statement which references B. On the other hand, A has data connection to B if

there is some variable X whose value is changed in B and referenced in A. As

an example, consider the same structure chart as before:

77

% . I.

* iA

*: I

B

-I.. ERFOR.IED
A.

4 ~ PERFORM B.
ADDI O TOX.

B.
PERFORM C.
ADD P, Q GlVING X.
MOVE Y TO Z.
PERFORM D.
PERFORM E.

MOVE ZERO TO Q

C.

MOVE S TO P.
MOVE I TO Q.

D.

ADD Z TO K.

% E.

PERFORM C.

-it, this case,

...4. .- ", .. ,' ;.;.; ;'. ,",'. .' .' ,. . ' ,""'-":": -' . , . ."":-,. ". .. .- "'."

78

Fan-in of B 0(control connection to B) +
0# data connection to B)
1 + 1, (A => cB, A => dB), D => dB
2.

Note that, although A has both control and data connection to B, it is

counted only once in calculating the fan-in of B. Furthermore, it should be

mentioned that the fan-in of chunk A will be entirely determined by the number

of data connections to A, since there is no control connectior, to A.

3.3 Source of Data and the Comparison of the Metrics

The COBOL programs considered in this study were written by the students of

an undergraduate course on "introduction to file processing" at the Ohio State

University. Two different sets of programs were analyzed. The first set of

programs deals with input data validation (i.e., the program edits

transactions for a master file update). The other set of programs is

concerned with product master file update; that is, the program updates a

product master file by making changes to several fields, e.g., product

description and prices, adding new products and deleting old products. It

should be mentioned that the students in this course are fairly familiar with

COBOL syntax, because this is their second course using COBOL. Each student, -,

while visiting a program, is also required to keep track of the program

development history using a shot log. This shot log provides detailed

information about actual programming time needed in various activities (e.g.,

time in designing, in coding and in modifying at each subsequent run, etc.).

About 20 students tool' part in the study. However, after all the shot logs

were obtained, only three subjects corresponding to extreme situations were

selected. In other words, for each type of program, the study was made using

only a sample subject which showed small, medium and very high development

times respectively. For each of the programs considered in the analysis, all

four complexity metrics were calculated.

.".

79

" :In order to find Halstead's effort, each program was run through the

Software Science Analyzer [21 developed by the Software Metrics Research group

at the Ohio State University. All other complexity metrics were evaluated

manually using the source code and the hierarchy chart for each program. The

i Idetailed derivations of these results are included in Appendix A.

.. ~The results of calculating the four different metrics for two sets of COBOL

programs are summarized below:

*, J .

- Prog. Program ID Reported Halstead Information Chunk Model
Set Time in Effort Flow Com- Complexity

Hrs. (E) V(G) plexity (C)
(IFC)

CIS 313-L2- 15 1104705 36 5051929 314
TC0650

1 CIS 313-L2- 10.5 1241195 41 8661844 295
TCD671

CIS 313-L2- 27 1267142 43 4402984 362
-e TC0645

CIS 313-13 31 6895476 72 25709599 1031

TCD645

2 CIS 313-U3- 40 5503529 72 23343021 860

TC0671

CIS 313-13- 49 6938627 71 36751009 1309
TC0622

41

.. , ..

, It is observed that for the first set of programs, the chunk model

~~ complexity shows very good agreement with the reported time in the sense that

-Y

*w 80

%. it orders the three programs correctly. On the other hand, for this set the

Y , information flow complexity seems to be the worst predictor of time. Finally,

there is a good agreement between the complexity values of Halstead E and

V(G). For the second set of programs, E, information flow, and the chunk

model metrics order the programs identically. However, none of these metrics

orders the three programs properly with respect to reported tiire by the

programiers.

. 3.4 Module Based Comparison Between Effort and Information Flow Complexity

It should be noted that the complexity of a procedure depends on two

factors, namely, the complexity of the procedure code and the complexity of

the procedure's connections to its environments. Halstead and !:cCabe's

complexity measures appear to use only the first factor. However, the

information flow complexity measure, while using both the factors to some

degree, concentrates primarily on the procedure's connections to i ts

environment through the fan-in and fan-out. Since both the Halstead measure

and the information flow complexity measure fail to give uniform weight to ""

both the factors mentioned above, an attempt was made to find out how these

- two measures differ with respect to individual modules (performed paragraphs)

for the same sets of COBOL programs used in the previous section. In other -

words, the purpose is to see if both the measures behave the same way, or to

find out how they differ. The detailed results of the module-based comparison

for each sample are presented in this section. Note that E for each module

was obtained by running each procedure division paragraph (along with its

associated data division entries) separately through the Software Science

Analyzer (21.

N Consider first the program CIS 313-L2-TC0645. The hierarchy chart for this

program is shown below, where each box denotes a modu~e i the program. The

asterisk k*) in module 2 indicates that it is an iterated part of module 1.

It is observed that for most of the modules there is very high correlation

*%
.*_J. . S..

81

JN between the complexity values in the two measures. For example, module 2

containing the only major loop in the program shows highest complexity in both

the veasures. Modules 6 and 7 seem to be equally complex, as expected from

V the code and design shown below. Finally, complexity values in both the

' measures show that modules 11, 12 and 13 are equally complex, as expected.

N Il

1 2*1

S . i I

ill1 131 1 4 1 1 5 1 1 9 1

I
---- ---- -- - -- - -----

16 1 17 1 18 1 1121 1131 1101

p-

? Pc

82

Module V Halstead, E IFC

1 31325 23750
2 102441 3630000
3 17509 3000
4 24823 5904
5 49232 336960
6 24962 10496
7 25204 10496
8 42094 22000
9 29456 158760

10 56099 88218
11 26742 37800
12 26742 37300
13 26742 37800

Table 66: Program ID: CIS 313-L2-TC0645

Now consider the program CIS 313-L2-TC0671. The hierarchy chart for this

program is shown below.

Il
4I

12*1

I I I I I 'q
I -----

li I .3 4 5111'
4.

II I I I I I*

16 7 1 1 8 1 1 4 1 112 1 1131 110 1

3 I

The numerical values of the Effort metric and the information flow

'.4

83

.% *MODULE 6

TYPE-1-4.

* THIS PARAGRAPH CHECKS TO MAKE SURE BOTH THE UPDATE
* PRICE AND THE DESCRIPTION ARE NON-BLANK, IF NOT
* A ,'LAG IS SET.

% IF PR-PRICE IS NOT NUMERIC OR
PR-DESCF.:IPTION OF F'UF-REC IS

MOVE I TO FLAGI
MOVE I TO FLAG?.
MOVE PR-PRICE TO PRICE

IF PR' PRICE IS NUMERIC
MOVE PR-PRICE1 TO PRICEI.

" "- *MODIJLE 7

TYPE-2-6-9." ** ** *** ***** * *** *** ***** **** * ** ** ** ** ** ** * *** * ** ** ** * ***

* FOR ACTIVATEJ DEACTIVATE AND DELETE BOTH THE UPDAiTE
* PRICE AND DESCRIPTION MUST BE BLANK; THIS FARAGRAPH
* SETS A FLAG IF THEY ARE NOT.

IF PR-PRICE IS NOT = ' ' OR
PR-DESCRIPTION OF PUF-REC NOT =

MOVE 1 TO FLAGI
U. ~MOVE I TO FLAG1O
"A ;IF PR-PRICE IS NUMERIC

MOVE PR-PRICE1 TO PRICEI.
MOVE PR-PRICE TO PRICE.

.

q, •

.4g : 4'b' ''""' - - h N"- -,'; ' - -"- "" ' "--' - ' "J ". '7 ' , " """''

., . .:,. .-i-rr ,,s--sr rs,. y pI .s, , 'y ,,, W,,U ,, , . 9.I - -.,.-... -. ... , . . . " . ..
.

- .

84

,,,.. tMODIJLE 11

, '?w""iIEtDER -PR 1.

, ,* THIS is TH-E F'ARAGRrFirl i ' TO ' ~ T HE,*i, it,h)0 i[Tor

"..'.-.' * OF THIE FPAGE FOR ALL. T1HE UFJ'lDA T E [O.JIR

W RITE P'R.I, CF-'RrC . FROM T 44DO
. i ~AFTE A[IVAO'C [ff[; 0l - rill"

:
-OF "'+AAE

*% %_-

"I. ' ", i kOE ALL UPD£ATE R 7,:Uf71TIS ' TO T ITLr--F'HRASE.
- '-"ADO) I. TO FPAI 1E- CT i

" -'-"k' mOVE PAGE-CTI TO PAGE-OUT.
{ ' ' WRITE F RINTER-RECI FROM T-HDG-I

AFTER ADVANCING 2 LINES.
WRITE PRINTER-REC1 FROM HDG-1

. - ' -,AFTER ADVANCING 2 I-INES.
i , : , , WRITE PRINTER-RECI FROM 14DG-:!

. , .iFTER ADVANCING 1 LINES.
' ' MOVE 6 lTO LINE-CT!.

*MODULE 11

SHEADER-PR2. W

* THIS PARAGRAPH PRINTS A HEADING ON THE TOP OF
T

HE PAGE
* FOR THE REPORT OF ALL THE GOOD UFDATE RE(IEST.

WR RITE RINTER-REC2 FROM T-HDG
,AFTER ADVANCING TO-TOP-OF-PAGE.

MOVE GOOD UPDATE REQUESTS' TO TITLE-PHRASE.
ADD I TO PAGE-CT2.
MOVE PAGE-CT2 TO PAGE-OUT.
WRITE PRINTER-REC2 FROM T-HDG-1

AFTER ADVANCING 2 LINES.

WRITE PRINTER-REC2 FROM HDG-1

AFTER ADVANCING 2 LINES.
WRITE PRINTER-REC2 FROM HDG-2

AFTER ADVANCING 1 LINES.
MOVE 6 TO LINE-CT2.

*MODULE 13

HEADER-PR2.
* THIS IS THE PARAGRAPH TO PRINT A HEADING ON THE TOP
* OF THE PAGE FOR ALL THE INVALID UPDATE REQUESTS.

WRITE PRINTER-REC3 FROM T-H*G
AFTER ADVANCING TO-TOP-OF-PAGE.MOVE 'INVALID UPDATE REUESTS' TO TITLE-PHRAE.

ADD I TO PAGE-CT3.
MOVE PAGE-CT3 TO PAGE-OUT.

WRITE PRINTER-REC3 FROM T-HDG-1
AFTER ADVANCING 2 LINES.WRITE PRINTER-REC3 FROM HOG-1AFTER ADVANCING 2 LINES.

e. .WRITE PRINTER-REC3 FROM HDG-.2
AFTER ADVANCING 1 LINES.

MOVE 6 TO LINE-CT3,

",1.

:.-.

85

S -complexity metric for each module are listed in the following table.

Module # Halstead E IFC

1 39654 25625
2 114327 7978176
3 19090 4752

. 4 11349 864
5 16414 7936
6 14203 2187
7 11769 864

- 8 19257 4320
" 9 21307 112896

&1 10 81104 348160
11 30401 54432
12 29491 54432
13 29491 67200

Table 67: Program ID: CIS 313-L2-TC0671

Note that, for most of the modules, the complexity measures in the two

cases are comparable. For example, module 2 is the oniy major Loop in the

program, and the complexity value of this module is highest for both the

measures as might be expected. NM.odules 4 and 7 are very small and perform

very similar functions (in fact, both the modules contain only one IF

- statement and a MOVE statement). The complexity values of these Ewo modules

are very close for both measures. However, the difference in the compleiity

. .values between nodules 12 and 13 is noticeable. In particular, the E measures

%I .of modules 12 and 13 are exactly the same, but the information flow complexity

-' suggests that the complexity of module 13 is somewhat higher than that of

,- module 12. Examining the actual code (as shown below), it can be seen that

- "both of these modules have virtually identical. functions and contain the save

-> ". number of lines of code. So, intuitively, the complexity should be about the

same.

The reason for the variation of information flow complexity values between

modules 12 and 13 is due to the higher fan-in value of module 13. The

inconsistency in the two complexity metrics suggests that the two metrics

serve different purposes. In particular,

OQ
4,6 Cz e(

86 L

*MODULE 12

* ~-*THE NEW-HEADER.-2 IS USED TO PRINT 'rHE NEW 4'
*HEADER AT THE TOP OF A) N'EW PAGE FOR
*PRINTER-FILE--2,

NEW-HEADER--2.
IF TOTAL-LINES-VALID NOT LESS THAN MAX-LINES'

MOVE PAGE--COUNT-'VAL II TO VALID-UPDA(.TE-PAGE
WRITE lrRINTER-P.E"COF:D-2 r ROM L..*UDT-HAE

AFTER 'TO~~N T 0~ P r - Po. 3E
WRITE: pp ~~I NTER--RECORD-*2 T::Li f,: LI. 11:.i

01 '-)FTER i DVANCI:*%!(O .. LI ilLS
WR ITE P i!E.IEIR.2I-R:OM~. T' 0 L P 1.

AFT[.R ADVANCIENG : N1
WR(liE F:RINTER.-RECORD-2 FROM TOFER 2

AFTER ADVANCING I LINES
MOVE 6 TO TOTAL-LINES3-VALID
ADD I TO PAGE--GCkUUNT --VAL ID.

*MODULE 13

*THE NEW-HEADER-3 IS USED TO PRINT THE NEW R.
*HEADER AT THE TOP OF A NEl PAGE FOR '
*PRINTtR-FILE-3. '

* ** ** ** ** ** ** ** ** ** ** 4** *1 * * * *lt*'K'
NEW -HEADER-3.

% ~IF TOTAL-LINES-INVALID NOT LESS THAN MAX-LINES3
di ~MOVE PAGE-COUNT-I'NVALID TO INVALID-UPDATE PAGE

WRITE PRItNTER-RECORD*-3 FROM IN4VAiL.ID-UPDrATE-HEADIER
AFTER ADVANCING TO-TOF'-OF-PAGE

WRITE PRINTER-RECORD-3 F.7ROM DATE-HEADER
O AFTER ADVANCING 1 LINES

*WRITE PRINTER--RECORD.-3 FROM rOPPER.-1
b% AFTER ADVA11CING 3 LINES

WRITE PRINTER-RECORD-3 FROM TO0P PE R--2
AFTER ADVANCING I LINES

MOVE 6 TO TOTAL -LINES-INVALID
ADD 1 TO PAGE-COUNT-INVALID.

77'

~aJ 87

1. Effort may be a development-oriented metric once the specification
is given rather than a maintenance-oriented metric. In contrast,
the information flow complexity may be a better indicator of

I modifiability, since information flow complexity strongly
emphasizes the procedure's connection to its environment through
fan-in and fan-out. (The chunk model might also be a better
indicator of modifiability.)

2. Effort may be a suitable metric for understanding a subsystem in
terms of its particular function and not in terms of understanding
a modification to that subsystem in connection with the whole

A system. That is, Effort is not concerned with the
interconnectivity or interdependency of modules with one another.

P

3. Effort helps to understand a module in isolation, i.e., one
subactivity of the system, not the total activity. But the

S.- information flow complexity metric accounts for the total activity
required for maintenance purposes.

- Therefore, a conclusion that can be drawn is that the Halstead Effort

measure may not be sensitive to the integration problem, in contrast to the

information flow complexity metric. Similar discrepancies among the modules

in other programs of the set can also be justified in the same way. The next

chapter will further explore the problem of measuring integration effort.

iI

-. J

p.11

0NC*

89

:-,' >. 4. Development of a Nev Approach to Measuring Softvare Effort

4.1 Motivation

In this chapter, an attempt is made to develop a new approach for measuring

-the software effort in a COBOL environment, where effort will be based on

programming time.

The programming time may be estimated using the software science formulas

. (2.11) - (2.12), as discussed in Chapter 2. The experiments reported by

4 Halstead [3] showing the comparison of actual programming times and the

estimated programming times using E involved only one subject. Another small

* experiment conducted later shows that when the effort measure is applied to

h large programs with multiple modules, i t consistently overestimates

O ,*-.. programming time [8]. A more recent set of experiments suggests that larger

O modules in multi-module programs should be conceptually broken into smaller

parts before applying the E measure 19, 10]. It is observed that the use of S

18 to convert the E measure to T works best for modules which take less than

two hours to produce and which are less than 50 lines of code in length.

Our study has been conducted in a COBOL environment in order to compare the

actual programming time and the estimated programming time. Two different

sets of COBOL programs were considered for this study kthe detailed

descriptions of these programs were given in the previous chapter). Each set

contains three subjects.

After these programs were submitted by the programmers, each program was

run through the Software Science Analyzer [2] at the Ohio State University in

order to get the various software science metrics, including Effort. The

effort value for each program along with the estimated tine (calculated by

9. using the equation (2.12) and the reported time provided by the programmer are

"' shown below. In the present analysis, S is considered to be 18, consistent

F PEVIUS AG 0

, ,,. % =% . , ,,.=._, *,. '. . ° 11 . ". %. . -'- . -.. 4.% -' "-. ' . " . "% . % ,""," . . , "%
•

" ' "* " .•" . . . "". "' "'

AD-A14l 467 A STUDY OF THE APPLICATION OF SOFTWARE METRICS TO COBOL 2/2,
(U) OHIO STATE UNIV COLUMBUS COMPUTER AND INFORMATION
SCIENCE RES.. N C DEBNRTH ET AL. JUL 83

UNCLASSIFIED OSU-CISRC-TR-84-3 ARO-?1i58.5-EL F/6 9/2 NLEEEEEEEEEEEEEI

EEshEEohEEEEEE
EEEEEEEEEEmhhEIIIIIIIIIIIIII

4

~~m"4

L-.1 1281p

.2
3 6

L6-1 1102.

1.25 III 1.4 1.6-

1~444 MICROCOPY RESOLUTION TEST CHART

NATONAL BUREAU Of STANDARDS 196%3 A

.

zt-4

,N '1

, '4 ,.. , . . ,.,., . . . ,..,..•.•...•.,. • .,. , , . .

S- - - . . .- -.-. . .b. o

90

with other studies which have examined Halstead's programming time

Arelationship (3].

Prog. Program-ID EFFORT, E Estimated Reported
Set Time, T, Time in

in Hours flours .

CIS 313-L2-TC0650 1104705 17 15
1 CIS 313-L2-TC0671 1241195 19 10.5

CIS 313-L2-TC0645 1267142 19.5 27

CIS 313-L3-TC0671 5503529 85 40
2 CIS 313-L3-TC0645 6895476 106 31

CIS 313-L3-TC0622 6938627 107 49

It should be mentioned that the programs in Set 1 contain 13 to 14

paragraphs in the procedure division while the programs in Set 2 contain

between 32 and 36 procedure division paragraphs. The results obtained for

these two sets of COBOL programs agree with the result obtained by 181,

namely, as the number of modules in a program increases, Ralstead's E

continuously overestimates the programming time. When a similar study was

performed for smaller programs (e.g., programs containing only I to 4

procedure division paragraphs), it was observed that E value underestimates

the programming time as shown in the table below.

Program-iD EFFORT Estimated Reported
(E) Time, T, Time in

in flours Hours

CIS 212-L2-TC118l 431250 6.7 11
CiS 212-L2-TC1183 361542 5.6 24
CIS 212-L2-TC1193 399532 6.2 26
CiS 212-L2-TC1194 546986 8.4 17
CIS 212-L2-TC1195 436812 6.7 15
C:S 212-L2-TC1199 414357 6.4 15 -

CIS 212-L2-TC1200 392176 6.1 13
CIS 212-L2-TC1208 413988 6.4 28.5
CIS 212-L2-TC1210 513006 7.9 27

*0. CIS 212-L2-TC1211 511548 7.9 15.5

The programs in this table were collected from an undergraduate course on

,%

.1 ; '..-,-,,,[? -... ,.,,.-.-,,.,,..-...-.-,,' ..- ,-, ..- ,- - ..- ,-.,.,€,.,,.. .

LI 91

"Computer Data Processing" at Ohio State University. The program deals

primarily with the formatted listing of an input file, along with some control

totals, e.g., total number of records in the file. Each student, while

writing the program, is required to keep track of the development history

using a shot log. The shot log provides the actual time spent by the

progratmer at various stages (e.g., in designing, in coding, in debugging,

etc.).
.v- , •

L "Based on the behavior of E, as observed for COBOL programs of various

sizes, it is evident that a new approach to measuring development effort is
R,

warranted. This chapter is devoted to addressing this question.

4.2 Formulation of the Approach

d"- ~ Software typically consists of a set of modules. The total effort required

to develop a piece of software can then be defined as the sum of the unit

efforts of all the modules plus the effort needed to integrate these modules

into a single system. In other words, the total development effort can be

expressed as:

: 5 • ETotal - U(i) + E(
l(4.2)

" and the estimated development time might be computed according (a la Software

-.: ~ ~Science) to the expression

Test ETota1/(l8 x 3600) hours

where

U(i) Effort needed to write the ith module (for COBOL, this
will] mean the appropriate paragraph of procedure division
together with its accompanying data division entries)
(UNIT EFFORT of the ith module];

E1 Effort required to integrate all the modules to form
a complete system (INTEGRATION EFFORT);

N! P
*" * i

7.

924

4 " .

q = Number of modules (paragraphs) in the procedure division.

In the present analyses, the unit effort U(i) of the ith module is

considered to be the Halstead E measure for this module, together with its
5-..

accompanying data division entries. The E1 of the system has been approached

using the following three strategies.

4.2.1 Strategy I

The integration effort for a subsystem is the effort required to integrate

or combine all the modules contained in the subsystem. So, intuitively, only

. a fraction of the total efforts of all the modules contained in the subsystem

would be contributing to the integration effort. Therefore, one possible

approach to find the integration effort can be formalized as follows.

El of a subsystem = K [Effort of the union of all the
modules in the subsystem except
the driver (calling module)]

where K is a multiplication factor denoting a fraction of the union above.

Let us arbitrarily choose this fraction to be 1/2. The integration effort for

-. each subsystem can be calculated using this strategy, which can then be

extended to find the integration effort for the entire systerr. Once the E1

for the whole system is obtained, the use of equation (4.1) will allow ETotal

and hence Test for the software system to be calculated.e.1

To illustrate, the structure chart for the program CIS 313-L2-TC0650 and

the entire derivation using this strategy follows:

.JF,

I-.

.J7

93

2

%'

3 4 5610

51 1 13

7:
A.w

E(sub 13) = E(sub(13,14))
= u(13) +U(14) + K E(14)
-u(13) + U(14) +K U(14) , *E(14) =u(14)

~. *E(sub 10) = Eksub(1O, 11, 12, 13, 14))
=U(1O) + U(11) + U(12) +E(sub 13)

KLU(11, 12, 13, 14)]

ii]

S.. ."

E(sub 40) fiE(sub(k0, 7, 8, ,))

UUU%*%* .*%*.~~*.* U(11 12, *~ 13 14)] -

a.,.

94

= U(4) + U(5) + U(7) + U(8) + U(9) +
K[U(5, 7, 8, 9)A

E(sub 2) =~ E(sub(2, 3, 4, 5, 6, 10))
= U(2) + U(3) + E(sub 4) + U(5) + U(6) +

E(sub 10) + KiU(3, 4, 5,...,14))

E otal U91) + E(sub 2) + K[U(2, 3,...,14)1E~Total 1

14
SZ U(i) + KfU(14) + U(5, 7, 8, 9) +
i~l U(I1, 12, 13, 14) + U 3, 4,...,14) +-

U(2, 3,...,14)] (4.3)

Note: Notation U(nl, n2 ,..., n i) means the effort of the a,.

union of the modules nI , n2 ,...,n i .

4.2.2 Strategy 2

By examining the second term of equation (4.3), it can be seen that E1

contains the effort value of some modules more than once. In particular,

modules not directly called by the subsystem driver are continual Ly

acontributing to the integration effort of the subsystem according to equation
WU

(4.3). The result of compounding the efforts for these modules may cause the

estimated effort to be too large.

Therefore, when computing the integration effort, Strategy 2 will count

only those modules which are directly called by the driver rather than all the

modules below the calling module. That is,

E1 of a subsystem = K[Effort of the union of all
the modules directly called by
the subsystem driven,

where K is still considered to be 1/2.

The detailed derivation for calculating the ETotal for the same system

using Strategy 2 follows.

E(sub 13) = E(sub(13, 14))
= u(13) + U(14) + K u(14)

:44.s
.5I

-€%;°'.

-- 95

., E(sub 10) = E(sub(10, 11, 12, 13, 14))
= U(10) + U(11) + U(12) + E(sub 13) +

K[U(11, 12, 13))

- E(sub 4) = E(sub(4, 7, 8, 9, 5))
U(4) + U(5) + u(7) + u(8) + u(9) +

KIU(5, 7, 8, 9)]

Eisub 2) E(sub(2, 3, 4, 5, 6, 10))
.R U(2) + U(3) + E(sub 4) + U(5) + U(6) + E(sub 10) +

K[U(3, 4, 5, 6, 10)]
ETota = U(1) + E(sub 2) + k U(2)

14i EotaZ = Uki) + K[U(2) + U(14) + U(5, 7, 8, 9) +

i-l U(11, 12, 13) +U 3, 4, 5, 6, 10) (4.4)

IStrategy 3
In the previous strategies for finding the integration effort of a

subsystem, the multiplication factor K was arbitrarily chosen to be 1/2. In

practice, however, some modules are always more difficult to integrate than

others, depending on such factors as the interaction between the calling

module and the called module, the number of times a particular module is

called from various parts of the system, etc. In other words, all the modules

should not be weighted the same, and there should be some means of

discriminating the multiplication factors associated with different

subsystems. Hence, in order to provide better justification for the choice of

K, Strategy 3 uses the following rule for selecting the multiplication factor

to be associated with a subsystem.

Number of data elements which are common between the
N!. subsystem driver and the union of the modules under

consideration
SK=--

Total number of data elements in the entire union of
modules of the subsystem under consideration

where 0 - K n 1.

The exact value of K will depend on the amount of interaction among, the

modules contained in a subsystem. A subsystem which has a large number of

variables in common between the subsystem driver and the rest of the modules

- * ! - |. -'. ' . '~..

96
q

is evidently more difficult to integrate than the one having less number of "

data elements in common between the driver and the rest of the subsystem. In

particular, if the calling module of the subsystem does not have any variable

in cort.on with the union of the rest of the modules, then K = 0. On the other

hand, if the calling module has all its data elements in common with the

union, then K 1.. In general, however, these extreme values of K do not seem

to occur very often. The value of K, in most situations, is observed to be

less than 1/2 and depends on the number and the size of the modules contained

in the union under consideration. To find the integration effort of a

subsystem using Strategy 3, the value of K, as calculated using the rule

stated above, is incorporated into equation (4.3) of Strategy 1.

4.3 Preliminary Results

All three strategies discussed in the previous section were applied to two

sets of COBOL programs, as described earlier in the chapter (Section 4.1).

The preliminary results obtained in all three cases are sunmiarized in the

table shown below. The detailed calculations for each program have been

included in Appendix B.

a'-
'a.

*0 o' "

'°No-

97

Program Halstead's Eq. Strategy 1 Strategy 2 strategy 3 Tm

Se -S33j2 Estimated Estimated Esti~ated Estimated

ID EFFORT Time EFFORT Time EFFORT Time EFFORT Time
T T T2 T3 in flours

Sin Hrs. in Hrs. in Hrs. in Hrs.

CIS 313-L2 1104705 17 1475028 22.7 806751 12.4 977778 15.08 15.0

-TC0650

CIS 313-L2 1241195 19 1399156 21.6 727586 11.2 1033443 15.9 10.5
q -TC0671II

CIS 313-L2 1267142 19.5 1413010 21.8 775025 12 1121026 17.3 27.0

-TC0645

CIS 313-L3 5503529 85 6799232 105 2508999 38.7 2895952 44.7 40

-TC0671

2 CIS 313-L3 6895476 106 6863622 105.9 3705425 57 5220200 80 31
-TC0645

CIS 313-L3 6938627 107 7180899 110 2937307 45 4078366 63 49
-TC0622

Note that TI (Test using Strategy 1) is much higher than the actual reported

time, as expected from the nature of the equation (4.3). The summary of the

. "results indicates that in some cases Strategy 2 works better than Strategy 3

% :- and vice versa, although neither of these strategies work uniformly well in

predicting actual time required to write the software. Both T2 and T3 appear
-ii-' 2...to more uniformly approximate reported programming tive than do TI or T kthe

Halstead estimate), particularly on the larger program (Set 2). While this

' evidence is very preliminary and inconclusive, it does suggest that new

approaches to measuring integration effort may yield more useful

A % approximations of development time.

%"---

.' , 4.4 Further Refinement

'j The results of the previous section suggest that further refinement of the

models proposed is required to obtain more reasonable agreement between the

! estimated time and the reported time. Some of the issues whi ch seem to be

. helpful for further refinements of the models are described below•.",.

% T 1. The interaction between the subsystem driver and each individual
.-. module contained in the subsystem should be more carefully

..-. considered. Consider an ex:ample as shown below, where the driver P
.calls two modules Al and A2 sequentially.

-

-J

.,

IAI I 1A2 I
---- -- ----

4.FSuppose the set of data elements that appear in P is A, B, C, 'i,

-7-4

The" N reslt tof thfereviousasectin sueostdre tha efrterirefnemeto o the

-odelcase A and A2 may contain the data elements A, B, C, L and A, B, t
esimC, H respectively. In the other case A and A2 may contain data

h elements A, B, L and C, 1 respectively According to Strategy 3

.: . (discussed in Section 4.2), in both the cases the multiplication"'
-. hfactor K = 3/5. The integration effort for this subsystem is,

therefore,

: K[U(Al, A2)J
=3/51U(AI, AM) I

where UeA, A2) denotes the effort when Al and A2 are combined

together.

.. It should be noted that the multiplication factor K is used to
define the interaction between a calling module and the rest of the

modules in the subsystem. In the present example, there is clearly
more interaction between the driver and the called modules in the L,

f irst case than there is in the second case. Intuitively, one
might therefore expect the first case to require more integration

effort than the second case. That is, the value of K in the first"-
case should be greater than 3/5, and in the second case it should
be less than 3/5. To overcome this problem, we might separately
calculate K (using the rule of Strategy 3) between the driver and "

-' % each individual module contained in the subsystem, and then take
If the average of all. K's. This average value of K may be used as the

- / '

',. ","

. q''' ,' ,;* "k - '. - . ' " "- " * - . "," " . ' , - . , ", "-" ' . -
,~~~~~~~~~A ,. . ,. A. : I. . . - , .

99

multiplication factor associated with the subsystem. In the first

case of the current example, the interaction between P and Al wouldAbe given by

KI 3/4

and that between P and A2 is also

~K 2 = 3/4.
A2

. Hence, K for the subsystem is found to be

K1 + K2

k ------ 3/4 (which is > 3/5).
*2

The similar calculations for the second case give

KT = 2/3, K2 = 1/2 and K 7/12 (which is less than 3/5).

The above discussion and the results of the previous section
indicate that a reasonable model of integration effort might use
Strategy 2 (discussed in Section 4.2) with the K value to be
calculated using the strategy described above instead of the
arbitrarily chosen value of K = 1/2.

2. In Chapter 2, it was realized that both the information flow
complexity and the chunk model complexity give strong emphasis to
the connectivity among system components. Therefore, it may be
possible to apply the idea of information flow and chunk model for
evaluating the integration effort of a system, since the
integration effort primarily accounts for the connectivity among
different system components.

It is our opinion that, once a more accurate method for calculating the

integration effort associated with a system is found, more reliable estimates

of the actual development tine for a piece of software can be obtained.

"~-"

°-.

----------...- . . -

.,. *1

,~. ~.

.1~

~t..

9.
9..9.~

9.'

U

9.

i
4-

4,.

* 4~,4,

'4..

V

*~. ?4

9.-.
4~4,

-4 %~*'~ ;4'% %~*~.%'~%~' ** . - .

u 101

5. Conclusion

The existence of the Software Science Analyzer developed at Ohio State

University helps to collect and analyze a large number of COBOL programs.

- . Various kinds of analyses using these programs are possible, including thosce

initiated in this report. The major part of the report was devoted to the

validation of the software science metrics on the basis of the analyses of a

large number of COBOL programs. It was observed that for CIS 212 progranr

•1 P "(small programs), the best estimate of the program length is attained for the

entire program rather than for the data or procedure division alone. However,

for the larger CIS 313 and University Systems programs, the length equat:on

works equally well both for the entire program as well as for the procedure

f division alone. But since the data division is a significant part of any

4 COBOL program and may require a considerable amount of programming effort, we

recommend that it be included in software science studies. Secondly, software

science postulates that the language level (W) would be constant for ail

programs written in a given language. The present analyses, however, indicate

that the language level is not constant. Its use in other software science

relationships is therefore suspect, and it is not recommended as a useful

metric to be applied to an individual program. Finally, the estimated

programming time (as calculated from the Effort metric) provided tantalizingly

good values for many of the smaller student programs, but failed to produce

good results when applied to larger programs. We feel that this is due to a

faulty capturing of integration effort by the Halstead E measure. For small

\ programs, integration is of minimal importance, so E may work well. For large

programs, however, integration effort is critical.

Ie also studied the interrelationships among several software metrics,

- namely, Halstead's effort, McCabe's cyclomatic complexity, Kafu:a's

information flow complexity and Davis' chunk model complexity. In particular,

_ we studied the behavior of each of these measures as estimates of programming

.0'

-- S..-.

102

time. We were unimpressed with the way each of the metrics behaved in this

regard.
.o

It is our feeling that we still do not have very useful measures of

software effort, measures in which we can place much confidence. We have

suggested some approaches for further study, and reasons why we believe they

may be fruitful directions to pursue. The approaches are in some ways

derivatives of existing measures, so that past work may not all be in vain.

They attempt to promote the strengths of existing measures while correcting '

observed weaknesses. Without a fairly solid theory on which to rest the

development of software metrics, this appears to be the best we can do.

Laboratory experiments of the future will attest to the merits of any new

approaches. The current metrics of software complexity, however, appear weak

and very incomplete.

J. .. ,

-..

.4- .

.5.°

o103

References

Ii Davis, John S.
Chunks: A Basis for Complexity Measurements.
Proceedinks of the Symposium on Empirical Foundations of Information and

Software Science , Nov., 1982.

[21 Fung, K.C., Debnath, N.C., and Zweben, S.R.
A Software Science Analyzer for COBOL.
Technical Report OSU-CISRC-TR-83-2, Computer and Information Science

Research Center, Ohio State University, Columbus, Off, Feb., 1953.

%, [31 Halstead, M.

Elements of Software Science.
Elsevier North-Holland, New York, 1977.

[41 Henry, S. and Kafura, D.
Software Structure Metrics Based on Information Flow.
IEEE Transactions on Software Engineering SE-7(5), Sep., 1991.

[5] McCabe, T. J.
A Complexity Measure.
IEEE Transactions on Software Engineering SE-2, Dec., 1976.

[61 Shen, V.Y. and Dunsmore, H.E.

A Software Science Analysis of COBOL Prorams.
Technical Report CSD-TR-348, Department of Computer Science, Purdue

University, West Lafayette, IN, Aug., 1980.

-7[Smith, C.P.
A Software Science Analysis of IBM Programming Products.
IBM Santa Teresa Laboratory, TR03.081, Jan. 1980.

. 18i Woodfield, S.N.
%.Of Enhanced Effort Estimation y Extendin Basic Programming Models to

Include Modularity Factors.
.PhD thesis, Department of Computer Science, Purdue University, West

Lafayette, IN., Dec., 1980.

[91 Woodfield, S.N., Dunsmore, H.E., and Shen, V.Y.
-,9. The Effect of Moiularization and Comments on Program Comprehension.

Proc. Fifth International Conference on Software Enineering, 215-223,
%I .March, 1981.

1101 Woodfield, S.N., Shen, V.Y., and Dunsmore, H.E.
A Study of Several Metrics for Programmi ng Effort.
Journal Systems and Software , Dec., 1981.

1111 Zweben, S.H. and Fung, K.C.
Exploring Software Science Relations in COBOL and APL.
Proc. COMPSAC 79 ,Nov., 1979.

:.4

.', w " . ' ." . . .'. . ". ,. , , -,-- , . ,' - - -- -- - - - " - - . - '. v - .- ' .- ' ,.,.', ', ' .,, , " ,
.. .. . % ' ' , , ' . ' ' ' ' • ' ' ' , r - • % " • " e

lo05
I. A

The detailed counting strategy used to calculate the fen-in and fan-out

2 associated with each module of a COBOL program is described. The explicit

calculations for finding the information flow complexity metric and the chunk

model complexity metric corresponding to each program, considered in ChaFter

3, are also included.

1.1 Counting Strategy Used to Find the Information Flow Complexity for COBOL

Programs

The information flow complexity of a COBOL program was determined based on

the following strategies.

1. Each paragraph of the procedure division (PD) was considered as a
separate procedure.

2. Two different complexity values were derived using two different

length values as follows.

a. Length

- Number of statements (NOS) of the particular procedure
under consideration

Number of verbs in the paragraph

b. Length

= (NOS of the particular paragraph in PD) + (NOS in the data
division entries associated with this paragraph)

i *. - (ierbs in the PD paragraph) + (i- periods in the associated
data division entries)

The Data Structures (DS) retrieved and updated are counted by
assessing the number of referenced and assigned data items,
respectively, based on the semantics of the various COBOL
statements. Some of the rules followed are listed below.

S% PA.U4 GE

.. % % J --. v, ,~- ~* **~ ~~. - (~(. .. ',

106 4

COBOL Statements Rules

(a) MOVE identifier-i TO identifier-2. DS retrieved = 1, DS updated - I

MOVE "lonatantl TO identifier. DS retrieved - 0, DS updated = 1
literal

e.g., MOVE 1 TO FLAG;
MOVE 'BILL' TO NAME-IN.

(b) ADD constant to identifier DS retrieved = I, DS updated - I

e.g., ADD 2 TO COUNT.

ADD id-i, id-2 GIVING id-3 DS retrieved - 2, DS updated - 1

e.g., ADD A, B GIVING C.

ADD id-i TO id-2 DS retrieved - 2, DS updated - 1

e.g., ADD A TO B.

* (c) IF A - B THEN DS retrieved - 2, US updated - 0

IF A IS NUMERIC THEN DS retrieved - 1, DS updated - 0

(d) READ filenme AT END US retrieved - i, OS updated - I

MOVE 'YES' TO FLAG.

(a) WRITE OUT-REC FROM DS retrieved - 1, DS updated 1 1

detail-line AFTER

ADVANCING 2 LINES.

e.g.,
-

WRITE OUT-REC FROM Heading-i. US retrieved - 2, DS updated - 1

S.WRITE OUT-REC FROM Heading-2.

(f) SORT Sort-file DS retrieved - 1, DS updated = 1

USING file-I

GIVING file-2.

• .. 4., .. ''.'. * '''''''.'''....... ... 9--.= 4- . ~ *V 4

107
.J.

a.

ri .-1.2 Calculations for Finding Information Flow Complexity for Each Program

The explicit values of fan-in and fan-out corresponding to each module

(paragraph) along with their information flow complexity values are shown

below. For each module two different values of length are considered, hence

two different complexity values are shown. The first value corresponds to the

, ilength of the procedure division paragraph together with the associated data

division entries. The second value of the length refers to the length of the

procedure division paragraph only. The fan-in and fan-out for each module

consists of two distinct operands. The first operand denotes the number of

local flow(s) to (or from) the module considered. The second operand refers

ato the number of data structures from which the module retrieves information

,* (or which the module updates).

1.3 Calculations for Finding Chunk Model Complexity for Each Program

In order to find the chunk model complexity, the fan-in for each chunk

a (performed paragraph) is determined. The fan-in for each chunk is the sum of

the number of control connections and the number of data connections to that

chunk (as described in Section 3.4). The complexity of the entire program can

then be calculated using the formula shown in Section 3.4. In this section,

the fan-in value for each chunk is explicitly shown as the sum of two distinct

operands. The first operand refers to the number of control connections to

S".the particular chunk, and the second operand denotes the number of data

connections to that chunk. The specific chunks having control or data

* connections to each chunk are indicated to the right of each fan-en

computation (e.g., 2 => dl means that chunk 2 has a data connection to chunk

I). The detailed calculations for finding the chunk model complexity for each

program are shown below. The fan-in for the ith chunk is denoted by fi"

a' .

5%',5

5%.

~T00671. Lab 2, CIS 313

."MODULE FAN-IN FAN-OUT LENGTH (NOS) CFC -Length*2
.(Fan-in * Fan-out)

1 1+4-5 1+4-5 41 8 25625 5000

• .2 2+10-12 5+22-27 76 24 7978176 2519424

" -"3 1+1-2 4+2-6 33 11 4752 1584" '

4... 2+1-3 0+2-2 2,, 2 864 72
%' +3-4 0+4-4 31 6 7936 1536

6 1+2-3 0+3-3 27 4 2187 324

••-7 1+2-3 0+-,2 24 2 864 72

.. ,

:",8 1+2- 3 0+4-4 30 6 4320 288
.-- 9 4+4-8 3+4-7 36 9 112896 28224".

10 2+14-16 1+3-4 85 56 348160 229375
r- 11 1+8-9 0+-4-4 42 8 54432 10368 ..

12 1+8-9 0+4-4 42 8 54432 036

13 2+8-10 0+4-4 42 8 67200 12800
6233278661847 2819435
7 1+-3 +2, 242 84 7

8 +- 044 30 6420 28"

5m' 94483473 186 2245
102141 +3485- 486 297

11 18-90+4- 428 5432 036 •21890444 43 06
13 28-100*44 428 6200 280

109

INFORMATION FLOW COMPLEXITY

TC0650

MODULE FAN-IN FAN-OUT LENGTH (NOS) CFC - Length*
D+-P P (Fan-in * Fan-out)

2

1 1+2-3 1+2-3 29 6 2349 486

2 1+2-3 5+12-17 38 12 98838 31212

3 1+15-16 0+11-11 69 19 2137344 588544

4 4 1+1-2 4+2-6 30 12 4320 1728

5 2+2-4 0+4-4 45 8 11520 2048

6 1+8-9 0+9-9 60 19 393660 124659

7 1+3-4 0+4-4 43 6 11008 1536

8 1+3-4 0+4-4 45 8 11520 2048

9 1+3-4 0+3-3 44 7 6336 1008

. 10 1+1-2 3+0-3 7 3 252 108

,-, 11 1+13-14 0+9-9 50 17 793800 269892

12 1+14-15 0+9-9 86 19 1567350 346275

13 1+9-10 1+1-2 33 18 13200 7200

14 1+2-3 0+2-2 12 2 432 72

5051929 1376816

C.

?

J e

110 S

'p.

INOMIATZI FLOW CG(PLEXITY

TC0645 -

MODULE FAN-IN FAN-OiT LENGTH (NOS) CFC - Length* 2
D4-P P (Fan-in * Fan-out)2

1 1+4-5 1+4-5 38 8 23750 5000

2 2+8-10 5+17-22 75 27 3630000 1306800

3 1+1-2 3+2-5 30 11 3000 1100

4 1+2-3 0+4-4 41 6 5904 864

5 1+8-9 0+8-8 65 22 336960 114048

6 1+3-4 0+4-4 41 6 10496 1536

7 1+3-4 0+4-4 41 6 10496 1536

8 1+3-4 0+5-5 55 19 22000 7600

9 4+5-9 3+4-7 40 13 158760 51597

1 10 2+11-13 0+3-3 58 39 88218 59319

11 1+5-6 0+5-5 42 8 37800 7200

12 1+5-6 0+5-5 42 8 37800 7200

13 1+5-6 0+5-5 42 8 37800 7200

4402984 1571000

d,-.

.NS

INFORMATION FLOW COMPLEXITY

TC0645, Lab 3, CIS 313

MODULE FAN-IN FAN-OUT Length (L) IFC - L*(I*O)
2

() (0)

1 4+8-12 7+11-18 122 25 5692032 1166400
"-- 2 3+8-11 5+18-23 75 28 4800675 1792252

b, 3 1+1-2 3+2-5 30 11 30000 1100

' 4 1+2-3 0+4-4 41 6 5904 864

5 1+8-9 0+8-8 65 22 336960 114048
6 1+3-4 0+4-4 41 6 10496 1536

- 7 1+3-4 0+4-4 41 6 10496 1536

8 1+3-4 0+5-5 55 19 22000 7600

9 6+9-15 3+10-13 68 19 2585700 722475

10 1+11-12 0+3-3 55 36 71280 46656

11 1+5-6 0+5-5 42 8 37800 7200

12 1+5-6 0+5-5 42 8 37800 7200
i 13 1+5-6 0+5-5 42 8 37800 7200

14 2+5-7 0+5-5 42 8 51450 9800

15 3+2-5 0+2-2 17 2 1700 200
16 1+2-3 0+2-2 20 2 720 72

17 6+2-8 0+1-1 51 4 3264 256

18 5+2-7 4+0-4 35 4 27440 3136

19 1+3-4 1+2-3 41 6 5904 864

20 4+7-11 3+9-12 83 15 1446192 261360

21 3+9-12 0+14-14 80 24 2257920 677376

22 1+1-2 6+0-6 32 17 4608 2448

23 2+10-12 1+15-16 110 20 4055040 737280

24 2+5-7 2+6-8 73 16 228928 50176

" 25 2+7-9 2+7-9 85 14 557685 91854

26 2+4-6 2+5-7 83 12 146412 21168

27 2+5-7 2+6-8 73 16 228928 50176

28 2+4-6 2+6-8 74 16 170496 36864

29 6+5-11 0+4-4 62 5 120032 9680h %*
30 6+6-12 0+14-14 68 7 1919232 197568

' 31 5+6-11 1+8-9 80 9 784080 88209

32 1+4-5 +5-5 33 7 20625 4375

25709599 6118929

1 6

L112

INFORMATION FLOW CC(PLEXITY

TC0671, Lab 3, CIS 313

MODULE FAN-IN FAN-OUT Length (L) IFC - '-*4

(1) (0)

1 1+1-2 3+3-6 150 13 21600 1872
2 2+4-6 1+4-5 27 5 24300 4500
3 3+2-5 4+0-4 22 4 8800 1600
4 2+2-4 0+2-2 21 2 1344 128

5 2+2-4 0+2-2 20 2 1280 128
6 4+2-6 0+1-1 56 4 2016 144
7 4+2-6 5+0-5 38 5 34200 4500
8 1+3-4 1+2-3 47 6 6768 864

9 2+2-4 3+3-6 42 8 24192 4608
10 1+7-8 0-4-4 37 8 37888 8192
11 2+12-14 +15-15 70 14 3087000 617400

12 1+1-2 6+0-6 35 17 5040 2448
13 4+5-9 2+7-9 58 12 380538 78732
14 6+10-16 0+14-14 73 14 3662848 702464
15 1+0-1 0+1-1 19 1 19 1
16 1+5-6 2+11-13 85 14 517140 85176
17 1+3-4 2+4-6 65 14 37440 8064

* 18 1+4-5 2+5-7 82 12 100450 14700
19 1+4-5 2+5-7 80 10 98000 12250
20 1+3-4 2+4-6 67 14 38592 8064
21 1+2-3 2+3-5 65 13 14625 2925

• 22 7+11-18 1+9-10 45 16 1458000 518400
23 3+14-17 1+14-15 57 16 3706425 1040400
24 1+5-6 0+4-4 41 7 23616 4032

25 2+11-13 5+22-27 73 24 8993673 2956824
26 1+1-2 4+2-6 33 11 4752 1584

27 2+1-3 0+2-2 24 2 864 72
28 1+3-4 0+4-4 31 6 7936 1536

29 1+2-3 0+3-3 27 4 2187 324
30 1+2-3 0+2-2 24 2 864 72
31 1+2-3 0+4-4 30 6 4320 864
32 7+5-12 3+5-8 53 10 488448 92160

33 2+15-17 1+3-4 85 56 393040 258944
34 1+7-8 0+4-4 42 a 43008 8192
35 1+7-8 0+4-4 42 8 43008 8192
36 3+7-10 +4-4 43 8 68800 12800

23343021 5913156

I-' %'. ' , r % .V-- *.-.N.

.. ..

113

INFOYATION FLOW COMPLEXITY

TC0622, Lab 3, CIS 313

MODULE FAN-IN FAN-OT Length (L) IFC - L*(I*O)
2

(1) (0)H " 1 4+8-12 6+12-18 124 30 5785344 1399680

2 1+1-2 0+2-2 12 2 192 32
3 1+5-6 1+3-4 34 10 19584 5760
4 2+11-1 5+18-23 63 29 5632263 2592629
5 1+7-8 4+2-6 31 12 71424 27648
6 1+2-3 0+2-2 16 3 576 108
7 1+2-3 0+2-2 16 3 576 108
8 1+2-3 0+2-2 17 4 612 144
9 1-3 0+1-1 12 2 108 18

10 1+3-4 0+3-3 21 6 3024 864
11 4+15-19 313-16 82 29 7578112 2680064
12 1+5-6 0+5-5 35 11 31500 9900
13 2+7-9 0+5-5 37 12 74925 24300
14 2+11-13 0+3-3 59 39 89739 59319
15 2+8-10 0+6-6 31 9 111600 3240016 2+9-11 0+7-7 42 10 249018 59290
17 4+2-6 0+1-1 45 2 1620 72

18 5+2-7 4+0-4 31 4 24304 3136
'I 19 2+8-10 1+7-8 59 11 377600 70400

20 4+5-9 4+7-11 64 13 627264 127413
21 3+7-10 2+9-11 85 16 1028500 193600
22 8+6-14 0+5-5 39 11 191100 53900
23 1+1-2 6+0-6 18 6 2592 864
24 2+11-13 0+12-12 37 12 900432 292032
25 2+8-10 4+14-18 108 25 3499200 810000
26 2+6-8 4+6-10 80 28 512000 179200

% 27 2+4-6 5+4-9 54 17 157464 49572
-" 28 2+6-8 4+7-U 83 18 642752 139392

29 2+6-8 4+6-10 80 28 512000 179200
30 2+5-7 4+5-9 80 28 317520 111132
31 6+8-14 0+18-18 75 18 4762800 1143072
32 1+3-4 0+3-3 31 3 4464 432

'-4 33 1+15-16 1+14-15 60 17 3456000 979200
34 1+5-6 0+5-5 36 11 32400 9900
35 7+3-10 1+3-4 29 5 46400 8000

36 7+3-10 0+2-2 15 3 6000 1200

36751009 11243981

IN,

Lq I. I I III Ili • m

114 "s

Program: CIS 313 - L2 - TC0650

f-1 - 0+1 - 1 2 - dl

f2 - 1+1 = 2 1 -c2, 13 d2

f -1 +0 - 1 2 - c3
3

f -=1+1 -2 2 -c4, 13 d4

f - 2+1 - 3 2 - c5, 4 c5, 13 d5

f6 -= 1+2.- 3 2 c6, 10 - d6, 13 * d6

f7 = 1+1 = 2 4 - c7, 13 - d7

f - 1+1 = 2 4 - c8, 13 - d88

f9 M 1+1 - 2 4 - c9, 13 - d9

10 1+O W 1 2 - c10.'"

[:fl W 1+0 M 1 10 - ell

: ., f -f 1 +1 w 2 10 - c12, 14 - d12 .::

f - 1+1 w 2 10 - c13, 14 - d13
13 -

f 14 1+0 W 1 13 - c14.

1 2
C (c1+c3+c10+c1i+c14) z + (c 2 +c4+c7+c8+c9+c12+13 Z R7 +

*~~ in110 M1-0

3
(c5+c6) . Rm .

.•, 6 m- -

CP+D - (29+69+7+50+12) 1"666 + (38+30+43+45+44+86+33) 2"11 +

(45+60) 2"406

- 1204

Cp- (6+19+3+17+2) 1666 + (12+12+6+8+7+19+18) 2-11 + (8+19) 2-406.

- 316

Note: Ce+D is the complexity of the program when length for each module

contains the length of the PD paragraph along with the associated DD
entries. C is the complexity of the program when length of each

module refers to the length of the PD parat-aph only.

.,'.

%...*.%~ -

El
4

".

115

"*44' .4

Program: CIS 313 - L2 - TC0671

f 1 0+1 1 2 - dl

. f = 1+2 - 3 1 4 c2, 9 4 d2, 10 - d2
~ . 2

f3 - 1+1 - 2 2 - c3, 10 - d3

f = 2+1 - 3 2 - c4, 3 - c4, 10 - d4
4

f - 1+2 = 3 2 - c5, 9 - d5, 10 - d5

f6 1+1 - 2 3 - c6, 10 - d6

f = 1+1 = 2 3 - c7, 10 - d7

f 1+1 - 2 3 - c8, 10 - d8

f9 M 1+1 - 2 2 - c9, 10 - d9

f 1 i+0 - 1 9 - c10
10

1 f M 1+0 - 1 2 -cll and 2 - d11

f12 -1 +0 - 1 9 -c12 and 9 - d12

f13 - 2+0 - 2 9 - c13, d13; 10 - c13, d13

1 2
C (c 1 +c 1 0 +c 1 1 +c 1 2) l R+ (c 3+c 6+7+c+c 3) m3 M "0- m=O

3
(c2+c4+c5) z R.

CP+D - (41+85+42+42) 1"666 + (33+27+24+30+36+42) 2"11 +

(76+24+31) 2"406

- 1070

Cp - (8+56+8+8) 1"666 + (11+4+2+6+9+8) 2"11 + (24+2+6) 2"406

- 295

- L-. ,.....*4. ,, . " . 4 , . ,

4..

116

Program: CIS 313 - L2 - TC0645

f l 0+1 =1 2 -dl

f = 1+2 3 1 - c2, 9 d2, 10 d2

f3 = 1+1 = 2 2 - c3, 10 - d3

f = + 2 2 - c4, 10 - d4
4

f = 1+1 = 2 2 - c4, 10 - d5
5

f 6 i+1 = 2 3 - c6, 10 - d6

f = 1+1 - 2 3 - c7, 10 4- d7~7
f8 M 1+1 = 2 3 - c8, 10 - d8

f9 = 1+1 = 2 2 - c9, 10 - d9

., .,fl0 Mf 1+"0 = 1 9 -. CIO

f = 1+0 =1 2 - c1ldl
1011%'% 1l +0 -- 1 2 -. cli, dll .-"

f12 = 1+0 = 1 9 - c12, d12

f 1= 1+1 = 2 9 - c13, 10 - d13"-" f13Y"

1 2
C = (Cl+C1O+cll+c1 2) . Rm + (c3+c4+C 5 +C6 +C7 +C8 +c913) zm

m=0 m=0
.. 3 m

(c 2) • :
• /.vM=O

-CD+ P M (38+58+42+42) 1"666 + (30+41+65+41+41+55+"40+42) 2-11 + (75x2"406)

- 1229

Cp f (8+39+8+8) 1"666 + (11+6+22+6+6+19+13+8) 2.11 + (27x2-406) -

= 362

'.5

P -1

A%

Li 117

- Program: CIS 313 - .3 - TC0645

fl 0+17 - 17 f17 = 2+5 - 7

f -1+4 - 5 f -1+0 - 1
2 18

' f3 -1+2 - 3 f1 9 = 1+9 - 10

f4 1+2 = 3 f2 0 1+10 11

f5 1+2 = 3 f2 1 " 1+1 = 2

-6 1+2 = 3 f 2 2 - 1+0 - 1

f 7 1+2 - 3 f23 - 1+8 - 9

f 1+2 - 3 f2 4 - 1+7 = 8

f9 1+3 - 4 f25 ' 1+6 - 7

f10 1+2 - 3 f26 - 1+5 6

S1 1 2 f2 7 '1+4 -

- "1+1 - 2 f 1+2 - 3
12 +28

f 1 1+4 - 5 f 2 9 5+9 - 14

f 1 4 2+11 - 13 f 3 0 = 6+9 - 15

f 15 3+4 - 7 f31 -+0 = I

f1 6 -1+2 - 3 f32
= 1+0 - 1.

Use of the notation

% i

.p%: '..3-0i R

gives

C = (c 1 8 +c 2 2+c 31 +c 3 2) R1 + (cli+C1 2+c2 1) R2 + (c 3 +c 4 5+c6+c7810+c16+c28 R3 +

c9R 4 + (c 2+c 1 3+c 2 7) R5 + c 2 6 R6 + (C1 5+c1 7+c2 5) R7 + c24R8 + c23R9 +

i~ q(c 1 9 R10) + '20R11 + C1 4R13 + c 2 9 R1 4 + (c3R-1 5) + (clR1 7)

CP+D - (25+32+80+33) 1"666 + (42+42+80) 2"11 + (30+41+65+41+41+55+55+20+74) 2"406 +

71 (68x2.603) + (75+42+73) 2"734 + (83x2.822) + (17+51+85) 2"88 + (73x2.919) +

(110x2.945) +(41x2.962) +(83x2.973) + (42x2"978) + (62x2"981) +

4
(68x2.983) + (122x2.984)

-4814

Cp - (4+17+9+7) 1.666 + (8+8+24) 2.11 + (11+6+22+6+6+19+36+2+16) 2-406 +

(19x2.603) + (28+8+16) 2.734 + (12x2.822) + (2+4+14) 2-88 + (16x2.919) +

(20x2.945) + (6x2"962) + (15x2"973) + (8x2.978) + (5x2"981) +

(7x2"983) + (25x2"984)

1031

,,;-... .- " ,

118

Program: CIS 313 - W - TC0671

f - 0+2 - 2 f19 " 1+2 - 3

f 2 - 1+7 - 8 f20 - 1+3 - 4

f -1+0 - 1 f 1 1+1 -2

-m 2+5 - 7 f m2 2 6+0 -6

f -2+2 - 4 - 1+0 - 1

" 6 - 2+4 - 6 f 2 4 1+0-1

S, 7 - 1+0 - 1 f2 5 - 1+4 - 5

f 8 - 1+8 - 9 f26 ' 1+2 - 3

f9 - 1+1 - 2 f27 - 2+2 - 4

f - 1+3 - 4 f ' 1+2 - 3

f 11 " 2+2 - 4 f 2 9 - 1+2 - 3

f 12f - 1+0 - 1 f 3 0 1+2 3 3

f13 m 1+0 - 1 f31 - 1+2 - 3

f - 6+2 m 8 f3 2 1+3 - 4
14 3

f 15 '+0 - 1 f33 -1+0 -.1

f 16 - 1+10 - 11 f 3 1+1 - 2.. 16 f34

f17 1+4 - 5 f35 - 1+1 - 2

f18 - 1+2 - 3 f3 6 - 3+3 - 6

C- (c3+c7+c 12+c 13+c15 +c23+c 2 4+c 33) Rl1 + (c4c 9+21+c34'35 R 2 +

(c 1 8 +c 1 9+c 2 6 +c 2 8+c 2 9 +c 3 0 +c 3 1) R3 + (5+c 0+C +C2 0 +c 2 7 ' 3 2) R4 + 19

(c 1 7 +c 2 5) R5 + (c6+c22+ 36) R6 + (c4*R7) + (c2 ' 1 4) R3 + (c8 "R9) +17.

(c16 "Rll)

S.'
-D (22+38+35+58+19+57+41+85) 1-666 + (150+42+65+42+42) 2.11 +

(82+80+33+31+27+24+30) 2-406 + (20+37+70+67+24+53) 2-603 +

(65+73) 2-734 + (56+45+43) 2-822 + (21x2-88) + (27+73) 2-919 +

(47x2.945) + (85x2.973)

- 4280

- (4+5+17+12+1+16+7+56) 1-666 + (13+8+13+8+8) 2-11 + (12+10+11+6+4+2+6) 2-406 +

(2+8+14+14+2+10+) 2-603 + (14+24) 2-734 + (4+16+8) 2-822 + (2x2,88) +

(5+14) 2-919 + (6x2.945) + (14x2.973)

-860

Coo

Cd
-r" ' ' " '.' ".'' " , " " " ,v ' , :" " t ' ;'" '' ""- ,"'- - "'-,""-""-' ":-. ' " "o-",, "."-". .:.:."'-.

W. laI i I I .7

-- 119

Progrm: CIS 313 - L3 - TC0622

0+6-6 -1+10 - 11

f' " . 2 f - 1+8 - 9

,...* .. 120

"' f 3 - 1+2 -3 f21 1+8 - 9

f - 1+6 -7 f -'8+8 - 16

f 5 -1+2 -3 f23 1+0 - 1

f 6 f 1+2 3 f24 2+0 - 2

f -1+2 -3 f2 1+11- 12
?N~* J2 ~7 25 11 -1

f8 - 1+2 3. f26 1+8 - 9

f9 . 2+1 3 f2 -1+8 - 9
!27

f - 1+2 3 f ' 1+9 - 10# ,1 r i 2 8

f" 1 1 - 1+4 5 f 1+8 - 9

f12 ' 1+1 2 f 3 0 -1+8 - 9

f " 2+3 -5 f -6+0 - 6
13 31

f 14 ' 1+3 -4 f32 +1 - 2

f15 " 2+7 9 f33 -1+0 - 1

f16 - 2+2 -4 f 3 4 1+0 - 1

."7 -2+3 -5 f35 6+1 - 7

- 1+0 -1 f -6+1 - 7,%, ., -- . 18 f36

C - (c 1 8 +c 2 3 +c 3 3+c 3 4) 'L + (c 2+c 1 2+c 2 4+c 3 2) R2 + (c 3+c 5+c 6+c 7 +c 8 +c 9 +c 1 0) R3 +

, -* (c 1 4+c 1 6) %4 + (c1 1+c 1 3+c 1 7) R5 + (c1 +c 3 1) R6 + (c4 +c 3 5 +C 3 6) R7 +

- (c15+C2 0+ 2 1 +c 2 6 +c27"c29c30) R9 (c 2 8 xR1 0) +
(cl 9XRll) + (c 2 5XR1 2) +(c 22x1R16)

7 % CP+D - (31+18+60+36) 1.666 + (12+35+37+31) 2.11 + (34+31+16+16+17+12+21) 2-406 +

(59+42) 2-603 + (82+37+45) 2-734 + (124+75) 2-822 + (63+29+15) 2-88 +

., ., (31+64+85+80+54+80+80) 2"949 + (83x2.962) + (59x2-973) + (108x2.98) +

(39x2.992)

; "-4678

Cp- (4+6+17+11) 1"666 + (2+11+12+3) 2-11 + (10+12+3+3+4+2+6) 2"406 +

'1, (39+10) 2-603 + (29+12+2) 2"734 + (30+18) 2-822 + (29+5+3) 2-88 +

* (9+13+16+28+17+28+28+) 2"945 + (18x2"962) + (11x2"973) + (25x2"98) + (11x2"992)

" 1309

N%E,,,. ,

121.

%.

" II. B

Detailed Computations Applied to the Models of Chapter 4

The explicit expressions for E total, calculated using all three strategies

described in Chapter 4, are presented in this section. The vaues of the unit

. l". effort for each module in a program are also shown. In order to determine the

unit effort for each module (procedure division paragraph) together with its

% data division entries, each module was run through the Software Science

Analyzer developed at Ohio State University 121.

4%

.,4

S

PP!

'4 V

-4

.1"4

EIS 18LA4s

4..

.,R. -

W- Axr. ,-. 7 . 7--. , . ° ., °

-- -. ,.. . .

122

1. Program: CIS 313-L2-TC0650

The structure chart for this program and the calculations for finding
E were shown in Section 4.2. The unit effort for each module obtained
total

from the analyzer report are shown below.

Module Union of the
Number Effort, E Modules Effort, E

1 18690 U(5,7,8,9) 69198

2 29471 U(1,12,13,14) 226655

3 64265 U(2,3, ... ,14) 912750

4 15232 U(3,4, ... ,14) 734895

5 27518 U(11,12,13) 218783

6 48370 U(3,4,5,6,10) 280491

7 28965

8 30554

"-. 9 32729

S.10 20000

11 33865

12 95320

13 35800

14 18000
'S'

4-

By Equation (4.3), strategy 1 yields

14
Eo - Z U(i) + 1/2[U(14) + U(5,7,8,9) + U(11,12,13,14) + U(3,4,...,14)
total il

+ U(2,3,... ,14)] (1)

- 1475028

- 1475028
T1 " 6 hrs. = 22.7 hrs.18x3600

. -k.-

kj 123

By Equation (4.4), strategy 2 vields

." 14
E total Z U(i) + 1/2[U(2) + U(14) + U(5,7,8,9) + U(11,12,13)

i-i
.~ *', + U(3,4,5,6, 10)] (2)

- 806751

T2 - 806751/(18x3600) - 12.4 hrs.

Referring to the actual code and equation (4.3), strategy 3 gives

14 p

Etotal Z u(i) + [1/3u(14) + 1/1OU{(5,7,8,9)} + 1/25{U(i1,12,13,14)}

+ 12/27{U(3,4,...,14)} + 4/28fU(2,3,...,14)}] (3)

.. - 977778

T3 977778 - 15.08 hrs.
3 18x3600

J%

SV

-p

-p

. 4 , - .. -.c ,-% '. %.% % .

, ,, ", _ p-

124

2. Program: CIS 313-L2-TC0671

The structure chart for this program is shown in Section 3.7.

.4 Strategy 1

E(Sub 10) - E(Sub(10,13))
- u(10) + U(13) + KU(13) .

E(Sub 9) - E(Sub(9,10,12,13))
- U(9) + U(12) + U(13) + E(Sub 10) + K[U(10,12,13)]

E(Sub 3) - E(Sub(3,4,6,7,8))

- U(3) + U(6) + U(7) + U(8) + U(4) + K[U(4,6,7,8)]

E(Sub 2) - U(2) + E(Sub 3) + U(4) + U(5) + E(Sub 9) + U(11) + K[U(3,4,...,13)]

E total U1) + E(Sub 2) + K[U(2,3,...,13)]

13
M Z U(i) + K[U(13) + U(10,12,13) + U(4,6,7,8)

i-i + U(3,4,...,13) + U(2,3,...,13)] (4)

Strategy 2

E(Sub 10) - E(Sub(10,13))
- U(10) + U(13) + KU(13)

.4

a. E(Sub 9) - E(Sub(9,10,12,13)).-
- U(9) + E(Sub 10) + U(12) + U(13) + K[U(10,12,13)]

E(Sub 3) - U(3) + U(4) + U(6) + U(7) + U(8) + K[U(4,6,7,8)]

E(Sub 2) - U(2) + U(11) + E(Sub 3) + U(4) + U(5) + E(Sub 9) "
+ K[U(3,4,5,9,11)]

E - U(1) + E(Sub 2) + KU(2) ..
total

13
M Z U(i) + K(U(2) + U(13) + U(4,6,7,8) ",

+ U(10,12,13) + U(3,4,5,9,11)] (5)

a 41

a -"

125

The unit efforts for each module are listed below.

Module Union of the
Number Effort, E Modules Effort, E

1 39654 U(10,12.13) 182823

2 114327 U(4,6,7,8) 37653

3 19090 U(3,4,...,13) 683082

4 11349 U(2,3,... ,13) 989549

5 16414 U(3,4,5,9,11) 215164
6 14203

7 11769

8 19257

9 21307

10 81104

11 30401

12 29491

13 29491

, ,

-. Using Equation (4)

IR 13
S Eotal Z U(i) + 1/2[U(13) + U(10,12,13) + U(4,6,7,8) + U(2,3,...,13)i-l + U(3,4,...,13)1

h'- = 437857 + 1/2x1922598

- 1399156

1399156
Ti - 1 21.6 hrs.

Ct.C 18x3600

,-..
-C,

CS, ~ .

,'"; II .'- ';d *,' - ,' -,-- -.-.- - , . --. . . -- - .-- -- -

126 ...

Using Equation (5)

413

E tot U(i) + 1/2[U(2) + U(13) + U(10,12,13) + U(4,6,7,8)
total + U(3,4,5,9,11)] -

- 437857 + 1/2x579458

- 727586

T2 - 727586/(18x3600) = 11.2 hrs.

Referring to the actual code, Equation (4) along with strategy 3 give

13
E total- I U(i) + [2/8U(13) + 4/24U(10,12,13) + 2/7U(4,6,7,8)

. 7/32U(2,3,.. .,13) + 15/31U(3,4,... ,13)] (6)

- 1033443

T3 - 1033443/(18x3600) = 15.9 hrs.

.1* "

-

,,.' IS\ * :..'' .'..* * *VV ' . V ~ ~

.4 127

Program: CIS 313-L2-TC0645

The structure chart for this program was shown in Section 3.7.

Strategy 1

" "E(Sub 9) - E(Sub(9,10,12,13))
- U(9) + U(10) + U(12) + [U(13) + K[U(10,12,13)]

" - E(Sub 3) - E(Sub(3,6,7,8))
- U(3) + U(6) + U(7) + U(8) + K[U(6,7,8)]

E(Sub 2) - U(2) + U(11) + E(Sub 3) + U(4) + U(5) + E(Sub 9)
'i. ' + K[U(3,4,...,13)]

E total - U(1) + E(Sub 2) + K[U(2,3,...,13)]

13
M Z U(i) + K[U96,7,8) + U(10,12,13) + U(3,4, ..,13)

... .,+ U(2,3,...,13)] (7)

Strategy 2

'< " E(Sub 9) - U(9) + U(lO) + U(12) + U(13) + K[U(1O,12,13)]

E(Sub 3) U(3) + U(6) + U(7) + U(8) + K[U(6,7,8)]

* E(Sub 2) - U(2) + U(11) + E(Sub 3) + U(4) + U(5)
+ E(Sub 9) + K[U(3,4,5,9,11)]

-E - U(1) + E(Sub 2) + KU(2)

13
Z U(i) + K[U(2) + U(6,7,8) + U(10,12,13)

+ U(3,4,5,9,11)] (8)

.S.4 *
Sl . m

- q., °

*I>1

5L

I i S . - *' * . -l " I " * ,, {
I

.~ I ""II"""" I""Il""i II"l

128

The unit efforts for each module are listed below.

Module Union of the
h Nu.mber Effort, E Modules Effort, E

1 31325 U(6,7,8) 71185

2 102441 U(10,12,13) 135153

3 17509 U(3,4,...,13) 653571

4 24823 U(2,3,. ..,13) 999369

5 49232 U(3,4,5,9,11) 274528

6 24962

'4-7 25204

8 42094

9 29456

10 56099

11 26742

12 26742

13 26742

The Equation (7) gives

E Z U~i)+ 1/2[U(6,7,8) + U(10,12,13) + U(3,4,...,13)

- 4337 +1/2x1859278 - 1413010

Ti 1413010/(18x3600) = 21.8 hrs.

I. ~ Equation (8) gives

13
E =Z U(i) + 1/2[U(2) + U(6,7,8) + U(10,12,13) + U(3,4,5,9,11)
total

= 483371 + 1/2x583307 = 775025

T2 - 775025/(18x3600) -12 hrs. -

A~

~LJ 129

Referring to the actual code, Equation (7) together with strategy 3 give

13
E_ Etotal W iI U(i) + [(2/6)U(6,7,8) + 4/22U(10,12,13)

i-k + 15/28U(3,4,... ,13)

+ 7/29U(2,3,... ,13)] (9)

- 1121026

T3 - 1121026/(18x3600) 17.3 hrs.

4

'

.4 n

.4I

130

4. Program: CIS 313-L3-TC0671

The structure chart for the program is shown in the following diagram.
The major steps of the calculations are given below.

Strategy 1

E(Sub 33) = U(33) + U(36) + KU(36) 77

E(Sub 32) U(32) + E(Sub 33) + U(35) + U(36) + K[U(33,35,36)]

E(Sub 26) = U(26) + U(27) + U(29) + U(30) + U(31) + K[U(27,29,30,31)]

4 E(Sub 25) = U(25) + E(Sub 26) + U(27) + U(28) + E(Sub 32) + U(34)
+ K[U(26,27,...,36)]

E(Sub 2) = U(2) + E(Sub 25) + K[U(25,26,...,36)]

E(Sub 23) - U(23) + U(24) + KU(24)

E(Sub 8) = U(5) + U(8) + KU(5)

'p. E(Sub 13) = U(l1) + U(13) + U(15) + K[U(1l,15)]

E(Sub 22) = U(22) + U(36) + KU(36)

E(Sub n) - U(n) + U(14) + E(Sub 22) + K[U(14,22,36)]
where n - 16,17,...,21

21
E(Sub 12) = U(12) + Z E(Sub n) + K[U(14,16,...,22,36)]

n-16

E(Sub 9) - U(9) + U(1) + E(Sub 12) + U(4) + K[U(4,11,Sub 12)]
- U(4) + U(9) + U(11) + E(Sub 12) + K[U(4,11,12,14,16,...,22,36)]

E(Sub 7) = U(7) + E(Sub 8) + E(Sub 9) + U(10) + U(Sub 13)
+ U(6) + K[U(4,5,6,8,...,22,36)]

E(Sub 3) = I(3) + U(4) + U(5) + U(6) + E(Sub 7) + K[U(4,5,. .. ,22,36)]

E = U(1) + E(Sub 2) + E(Sub 3) + E(Sub 23) + K[U(2,3,...,36)]
total

36 -

S"Etotal = Z U(i) + K[U(24) + 2U(36) + U(11,15) + U(26,...,36)

+ U(25,...,36) + U(33,35,36) + 6U(14,22,36)..~+ U(27,29,30,31) + U(4,11,12,14,16,...,22,36)
+ U(4,5,6,8,...,22,36) + U(4,5,...,22,36)
+ U(2,3,...,36)] (10)

'.

-p
p.,., -""";' ,; '", ,,. ''. ',,."y . , ,,A - , , . . "-.",T." -,, .-......-.. '..•;.. ,'.o'/ .> ,.".'. .

Li 131

c cn

C4 %
7Ed

9
4

,

-E4-

ILE-

LT3.

132 4

Strategy 2

E(Sub 33) = U(33) + U(36) + KU(36)

E(Sub 32) - U(32) + U(35) + U(36) + E(Sub 33) + K(U(33,35,36)]

E(Sub 26) = U(26) + U(27) + U(29) + U(30) + U(31) + K[U(27,29,30,31)]

E(Sub 25) - U(25) + U(34) + E(Sub 26) + U(27) + U(28) + E(Sub 32)
+ K[U(26,27,28,32,34)]

E(Sub 2) = U(2) + E(Sub 25) + KU(25)

E(Sub 23) = U(23) + U(24) + KU(24)

E(Sub 8) = U(5) + U(8) + KU(5)

E(Sub 13) - U(13) + U(15) + U(11) + K[U(11,15)]

E(Sub 22) - U(22) + U(36) + KU(36)

E(Sub n) - U(n) + U(14) + E(Sub 22) + K[U(14,22)]
where n - 16,17,...,21

21
E(Sub 12) = U(12) + Z E(Sub n) + K[U(16,...,21)]

n-16

E(Sub 9) - U(9) + U(11) + E(Sub 12) + U(4) + K[U(4,11,12)]

E(Sub 7) - U(7) + E(Sub 8) + U(10) + E(Sub 9) + E(Sub 13) + U(6)
+ K[U(6,8,9,10,13)]

E(Sub 3) - U(3) + U(4) + U(5) + U(6) + E(Sub 7) + K[U4,5,6,7)]

E tota = U(1) + E(Sub 2) + E(Sub 3) + E(Sub 23) + K[U(2,3,23)I

36
= Z U(i) + K[U(24) + U(25) + U(36) + U(2,3,23) + U(4,11,12)
il + U(4,5,6,7) + U(33,35,36) -+ U(5,8) + U(11,15)

+ U(6,8,9,10,13) + U(27,29,30,31)
+ U(26,27,28,32,34) + 3{U(36) + U(14,22)}] (11)

.7.

Li 133

Strategy 3

Referring to the actual code, Equation (10) and the strategy 3 give

36
E Z U(i) + [2/8-2U(36) + 2/7U(24) + 3/5U(11,15)

+ 3/37U(25,...,36) + 15/36U(26,...,36)

+ 4/26U(33,35,36) + 2/7U(27,29,30,31)
+ 2/26U(4,11,12,14,16,...,22,36)
+ 2/34U(4,5,6,8,...,22,36)

+ 2/34U(4,...,22,36) + 9/61U(2,...,36)
+ 3{3/16 + 2/16}U(14,22,36)] (12)

* , The unit efforts for each module are listed below.

Module Module
Number Effort, E Number Effort, E

1 275416 19 58528

2 15609 20 42012

3 4500 21 40503

4 7104 22 31612

% 5 5900 23 46382

6 32786 24 23504

7 4750 25 106762

" 8 25381 26 17687

4% 9 35050 27 10280

10 24527 28 14968

11 49384 29 12942
\'" . 12 13135 30 10677

13 48179 31 17643

14 63715 32 42536

15 1550 33 81104

:.., ._ 16 64625 34 30401

.' " 17 30309 35 29491

18 59524 36 30792

"be

!k Iw .- - . . x - -. ..-. .-

134

Union of the Modules Effort, E

U~l1 15)50000

U(14,22,36) 210494

U(33, 35,36) 182823

U(27,29,30,31) 32981

UJ(26,. ..,36) 641582

U(25,...,36) 995663

U(4,11,12,14,16,.. .,22,36) 653081

~6U(4,5,6,8,9,... ,22,36) 1126370

U(4,. ..,22,36) 1309907

U(2,3,. .. ,36) 4417377

U(5,8) 39783

U(2,3,23) 171863

U(4,11,12) 139727

U(14,22) 145758

U(4,5,6,7) 171860-

U(6,8,9,10,13) 46592

U(26,27,28,32,34) 206592

The use of the numerical values from these tables into Equations (10),
(11) and (12) yields the following values of E total and Test.

Using Equation (10), with K71/2

E toa 1409268 + 5389964

- 6799232

TI - 6799232/(18x3600) - 105 hrs.

Using Equation (11), with K=1/2

E ttl-1409268 + 1099731

- 2508999

T2 -2508999/(18x3600) -38.7 hrs.

.- A.%Wil

u 135

Using Equation (12)

E tot - 1409268 + 1486684

- 2895952

T3 " 2895952/(18x3600) - 44.7 hrs.

°. '*%

.,

4.

. -.- S' -, , 5 5 * ... , ..- .. L. , ... *..,,,,, ,. *

~~136 n
.. "-.

5. Program: CIS 313-L3-TC0645 6

The structure chart for the program is shown in the following diagram.
The major steps of the derivation are given below.

Strategy 1

,'. E(Sub 3) = U(3) + U(6) + U(7) + U(8) + K[U(6,7,8)]

E(Sub 9) = U(9) + U(10) + U(12) + U(13) + K[U(10,12,13)]

E(Sub 2) - U(2) + E(Sub 3) + U(4) + U(5) + E(Sub 9) + U(I1)
+ K[U(3,4,...,13)]

E(Sub 31) = U(31) + U(32) + KU(32)

1. E(Sub 19) = U(15) + U(19) + KU(15)

E(Sub 23) - U(23) + U(30) + KU(30)

E(Sub n) = U(n) + U(29) + U(30) + K[U(29,30)]
where n - 24,25,26,27,28

28

E(Sub 22) - U(22) + E(Sub 23) + Z E(Sub n) + K[U(23,24,...,30)]
n-24

E(Sub 20) - U(20) + U(14) + U(15) + E(Sub 22) + K[U(14,15,22,. .. ,30)]

E(Sub 18) - U(18) + E(Sub 19) + E(Sub 20) + U(21) + U(17)
+ K[U(14,15,17,19,. .. ,30)]

17
E - U(1) + E(Sub 2) + Z U(i) + E(Sub 18) + E(Sub 31)
total 111-14

+ K[U(2,3,...,32)]

32

Z U(i) + K[U(15) + U(30) + U(32) + 5U(29,30)
i1 + U(6,7,8) + U(10,12,13) + U(3,4,...,13)

+ U(14,15,22,...,30) + U(14,15,17,19,...,30)
+ U(2,3,...,30)] (13)

.4-

.p~.

- ; . . . ,+ n i I ll~ ... i + l' [In II n h ll'- II~i "

137

.1 In

-12-

1.HE]-

SnE

.-- . 5 . • -.. . . . , q..

'

%

-13

'I Strategy 2

E(Sub 3) - U(3) + U(6) + U(7) + U(8) + K[U(6,7,8(] ,.

% bE(Sub 9) - U(9) + U(10) + U(12) + U(13) + K[U(10,12,13)]

E(Sub 2) - U(2) + U(11) + E(Sub 3) + U(4) + U(5) + E(Sub 9)
+ K[U(3,4,5,9,11)]

E(Sub 31) = U(31) + U(32) + KU(32) =

E(Sub 19) - U(15) + U(19) + KU(15)

E(Sub 23) - U(23) + U(30) + KU(30)

E(Sub n) - U(n) + U(29) + U(30) + KU(29,30)
where n - 24,... ,28

28 -.

E(Sub 22) - U(22) + E(Sub 23) + Z E(Sub n) + K[U(23,...,28)]
n-24

E(Sub 20) - U(20) + U(14) + U(15) + E(Sub 22) + K[U(14,15,22)]

E(Sub 18) - U(18) + E(Sub 19) + E(Sub 20) + U(21) + U(17)
+ K[U(17,19,20,21)]

17

Etotal - U(1) + E(Sub 2) + Z U(i) + E(Sub 18) + E(Sub 31)
i-14

+ K[U(2,14,...,18,31)]

32
Z U(i) + K[U(15) + U(32) + 5U(29,30) + U(6,7,8)
i-i

+ U(10,12,13) + U(14,15,22) + U(17,19,20,21)
% -~ + U(23,...,28) + U(3,4,5,9,11)

+ U(2,14,...,18,31)] (14)

U

'5%

- ¢. .-.

.5

T. .

139

Strategy 3

Referring to the actual code, Equation (13) and strategy 3 give

O32 E total Z u(i) + (0/3U(15) + 3/3U(30) + 2/6U(32)
i-1 + 2/7U(6,7,8) + 4/19U(10,12,13)

+ 15/29U(3,...,13) + 7/22U(14,15,22,...,30)
, 4+ 2/23U(14,15,17,19,...,30) + 15/50U(2,...,32)

- + {2-4/8 + 3.5/8}U(29,30)] (15)

-The unit efforts for each module are listed below.

Module Module
Number Effort, E Number Effort, E

1 254139 17 30120

2 104156 18 16039

3 17509 19 22697

4 24708 20 112753

5 51208 21 92941

6 25185 22 14133

7 25407 23 137424

8 43104 24 65552

9 78148 25 86413
10 48888 26 85116

11 845916 27 65552

". 12 26742 28 63435

4 " 13 26742 29 42038

14 24574 30 51637

15 5527 31 103208

16 5732 32 16796

S7.

140 .

U(,,.,1)700

U(4152,..30 431

U (293, 52084

U(1,,2) 74503

U(17,192,1) 169713

U(23,.. .,28) 783000

U(3,4,5,92,11) 634164

U(2141,1,...,3) 1188813

Usn Eutin(13)1,2 89934-1/

E otl U(213539 20083 658

Tl U68322/,18x60) 231504hrs

Then Euseiof these numeit a vausKnoEu-in113,(4/ad(5

yEld th followin vaue of0E and8est
ttotal

Using Equation (13),wihKl/

E toa 2613539 + 200831

- 6863622

Ti -865220/(18x3600) 8 05. hrs.

'Will

141

6. Program: CIS 313-L3-TC0622

The structure chart for this program is shown in the following diagram.
The major steps of the calculations are described below.

Strategy 1

E(Sub 3) = U(2) + U(3) + KU(2)

E(Sub 5) - U(5) + U(6) + U(7) + U(8) + U(9) + K[U(6,7,8,9)]
r.

E(Sub 11) - U(11) + U(12) + U(13) + U(14) + K[U(12,13,14)]

.',: E(Sub 4) - U(4)-+ E(Sub 3) + E(Sub 5) + U(9) + U(10)
+ E(Sub 11) + K[U(2,3,5,6,.. .,14)]

" E(Sub 33) = U(33) + U(34) + KU(34)

E(Sub 19) - U(16) + U(19) + KU(16)

E(Sub 21) - U(21) + U(22) + U(24) + K[U(22,24)]

E(Sub 35) - U(13) + U(35) + KU(13)

E(Sub n) - U(n) + U(31) + U(22) + E(Sub 35) + U(36)
+ K[U(13,22,31,35,36)]

where n - 25,26,28,29,30

I= 'E(Sub 27) U(27) + U(31) + U(32) + E(Sub 35) + 7U(36) + U(22)

+ K{U(13,22,31,32,35,36)]

30
E(Sub 23) - U(23) + Z E(Sub j) + K[U(13,22,25,...,31,35,36)]

N~ J -25

E(Sub 20) -U(20) + U(22) + U(24) + E(Sub 23) + U(15)
+ K[U(13,15,22,...,31,35,36)]

E(Sub 18) - U(18) + E(Sub 19) + E(Sub 20) + E(Sub 21) + U(17)
+ K[U(3,15,16,17,19,... ,31,35,36)]

E U(1) + E(Sub 4) + U(15) + U(16) + U(17) + E(Sub 18)
total + E(Sub 33) + K[U(2,3,...,36)]

36
- Z U(i) + K[U(2) + U(13) + U(34) + U(12,13,14)

, i=I + U(6,7,8,9) + U(2,3,5,...,14)
+ U1(13,22,31,32,35,36) + 5U(13,22,31,35,36)
4- U(13,22,25,...,31,35,36) + U(13,15,22,...,31,35,36)
+ U(13,15,16,17,19,.. .,31,35,36)
+ U(2,3,...,36)] (16)

142 1

LZ-1

-D
001 L

* .. fn

*E-- E.,7]

C4LI

.4d

ILEI

- . .-- 4 -. - - - - -

143

5% Strategy 2

-.~ E(Sub 3) - U(2) + U(3) + KU(2)

E(Sub 5) - U(5) + U(6) + U(7) + U(8) + U(9) + K[U(6,7,8,9)]

:.. /'. E(Sub 11) - U(11) + U(12) + U(13) + U(14) + K[U(12,13,14)]

E(Sub 4) - U(4) + E(Sub 3) + E(Sub 5) + U(9) + U(l0) + E(Sub 11)
+ K[U(3,5,9,10,11)]

E(Sub 33) - U(33) + U(34) + KU(34)

* E(Sub 19) = U(16) + U(19) + KU(16)

E(Sub 21) - U(21) + U922) + U(24) + K[U(22,24)]

E(Sub 35) = U(13) + U(35) + KU(13)

V'. E(Sub n) = U(n) + U(31) + U(22) + E(Sub 35) + U(36)
+ K[U(22,31,35,36)]

where n = 25,26,28,29,30

E(Sub 27) - U(27) + U(31) + U(32) + E(Sub 35) + U(36) + U(22)
+ K[U(22,31,32,35,36)]

30
E(Sub 23) - U(23) + Z E(Sub j) + K[U(25,...,30)

j-25

E(Sub 20) - U(20) + U(22) + U(24) + E(Sub 23) + U(15)
+ K[U(15,22,23,24)]

. E(Sub 18) = U(18) + E(Sub 19) + E(Sub 20) + E(Sub 21)
S + U(17) + K[U(17,19,20,21)]

E - U(1) + E(Sub 4) + U(15) + U(16) + U(17) + E(Sub 18)S .. total+ E(Sub 33) + K[U(4,15,...,18,33)]

36
= Z U(i) + K[U(2) + U(13) + u(16) + u(34)

i-i + U(22,24) + U(6,7,8,9) + U(12,13,14)
+ 5U(22,31,35,36) + U(3,5,9,10,11)

+ U(15,22,23,24) + U(22,31,32,35,36)
+ U(17,19,20,21) + U(25,26,...,30)] (17)

.4t

I OW" R . . -,--r-

144 A

Strategy 3 1

Referring to the actual code, Equation (16) and strategy 3 give

36
E Z U(i) + [1/2U(2) + 2/8u(13) + 2/7U(34)

total i-l + 2/6U(6,7,8,9) + 5/21U(12,13,14)

+ 13/41U(2,3,5,6,...,14)
+ 5/19U(13,22,31,32,35,36)
+ 1/24U(13,22,25,...,32,35,36)
+ 6/26U(13,15,22,...,32,35,36)

+ 2/31U(13,15,16,17,19,...,32,35,36)
+ 13/52U(2,3,...,36)
+ 5x5/18U(13,22,31,35,36)] (18)

e The unit efforts for each module are listed below.

Module Module
Number Effort, E Number Effort, E

1 254810 19 37967

2 3950 20 54702

3 17641 21 83802

4 84206 22 77958

5 20724 23 18400

6 6833 24 48179

7 7184 25 133481

8 10774 26 70769

9 5362 27 44601

10 12442 28 85176

11 106383 29 70769

12 18387 30 68746

13 22949 31 30164

14 55706 32 44229

15 18087 33 55758

16 29017 34 18486

17 48179 35 15638

18 48179 36 4818

'd-U,

145

.v

Union of the Modules Effort, E

U(6,7,8,9) 27626

S• U(12,13,14) 127210

U(13,22,31,35,36) 187760

U(13,22,31,32,35,36) 246134

U(13,22,25,...,31,35,36) 580819

_ U(13,15,22,...,31,35,36) 1111212

U(13,15,16,17,19,...,31,35,36) 1706111

U(2,3,. 36) 5397419

U(2,3,5,...,14) 712167

.,U(22,24) 82369

U(22,31,35,36) 154825

U(22,31,32,35,36) 207027

U(17,19,20,21) 223411

U(15,22,23,24) 233153

U(25,. ,30) 348113

U(3,5,9,10,11) 308263

The use of these numerical values into Equations (16), (17) and (18)

yields the following values of EtotaI and Test.

Using Equation (16), with K-1/2

E = 1734458 + 5446441 = 7180899
total

TI - 7180899/(18x3600) = 110 hrs.

Using Equation (17), with K=1/2

SEtotaI - 1734458 + 1202849 = 2937307

ZI T2 - 2937307/(18x3600) - 45 hrs.

Using Equation (18)

E total- 1734458 + 2343908 - 4078366

V T3 - 4078366/(18x3600) - 63 hrs.

J or ''e.

1, 4; ' AA ''F t
I '' 4%'

_jii

4' it 4

-16

1j,.

V. Z! 4 fl,

&~h~ZJ~t ~ V4
4

1 ' ' t%''t

